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1 Introduction

One of the potential contributors to the large productivity gap between developed and developing
countries is low quality infrastructure, and one of the most stark examples of infrastructure failures
is electricity supply in India. In the summer of 2012, India su�ered the largest power failure
in history, which plunged 600 million people into darkness for two days. Even under normal
circumstances, however, the Indian government estimates that shortages currently amount to about
ten percent of demand at current prices, and many consumers have power only a few hours a day.
In the 2005 World Bank Enterprise Survey, one-third of Indian business managers named poor
electricity supply as their biggest barrier to growth. According to these managers, blackouts are far
more important than other barriers that economists frequently study, including taxes, corruption,
credit, regulation, and low human capital.1

This paper studies the e�ects of electricity shortages on manufacturing plants in India. One
potential prior is that because electricity is an essential input - most factories cannot produce
anything without electricity for lights, motors, and machines - shortages could significantly reduce
output. On the other hand, precisely because the potential losses would be so large, many firms
might insure themselves against outages by purchasing generators or otherwise substituting away
from grid electricity. The limited existing evidence could support either argument. Foster and
Steinbuks (2009), Zuberi (2012), and others argue that the cost of self-generation is relatively small,
and Alam (2013), Fisher-Vanden, Mansur, and Wang (2013), and others highlight ways in which
plants substitute away from electricity when shortages worsen. By contrast, Hulten, Bennathan,
and Srinivasan (2006) argue that growth of roads and electric generation capacity accounts for a
remarkable 50 percent of productivity growth in Indian manufacturing between 1972 and 1992.

There are three reasons why this question is di�cult. First, the standard production function
model needs to be adapted for the case of input shortages, when firms cannot procure electricity
for a part of the year. Second, the necessary data are di�cult to acquire: some industrial surveys
do not have useful questions on electricity use, and more detailed firm-level datasets are often
unrepresentative. Meanwhile, countries that have electricity shortages are often the same types of
countries that do not record or disclose high-quality data on the performance of public infrastruc-
ture. Third, shortages are not exogenous to productivity. For example, rapid economic growth
could cause an increase in electricity demand that leads to shortages, or poor institutions could
lead to insu�cient power supply and also reduce productivity. Either of these two mechanisms
would bias causal estimates of shortages, albeit in opposite directions.

We begin by providing background on electricity shortages and industrial electricity use in In-
dia. First, there is significant variation in shortages within states over time, driven by weather, coal
shortages, fluctuating hydroelectric production, and other factors. Second, Indian manufacturers
self-generate approximately 35 percent of their electricity, more than twice the share in the United
States. Third, because of economies of scale in generator capacity, self-generation is sharply in-

1For a tally of responses, see Appendix Table A20.
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creasing in plant size: while only 10-20 percent of plants with fewer than 10 employees self-generate,
about 75 percent of plants with more than 500 employees do so.

We then present a production function model in which output is Leontief in electricity and a
Cobb-Douglas aggregate of materials, capital, and labor. Shortages have very di�erent e�ects on
firms with vs. without generators. Firms that use generators face an increase in electricity costs
(the input cost e�ect). This enters the profit function like an output tax and thus reduces demand
for other inputs (the output tax e�ect). Even if these firms never stop production during shortages,
productivity is lower due to the input variation e�ect: using di�erent bundles of fully flexible inputs
during outage vs. non-outage periods is less e�cient than having a constant flow of production.
Firms without generators shut down during shortages, which reduces output and causes waste of
non-storable inputs (the shutdown e�ect). The waste reduces demand for non-storable inputs when
firms foresee periods of higher shortages (the shutdown tax e�ect).

The empirical analysis begins with a case study of large textile manufacturers in Gujarat and
Maharashtra, using data shared by Bloom et al. (2013). These plants face pre-scheduled “power
holidays” once each week, and they respond either by self-generation or by shutting down, depending
on the week. While these data include only 22 plants, all of which have generators, they give very
clean estimates of the e�ects of shortages. The e�ects of these weekly “power holidays” are quite
small: energy costs rise by 0.24 percent of revenues, and while physical output drops by 1.1 percent,
productivity only decreases by 0.05 percent because 95 percent of inputs (both labor and materials)
can be flexibly adjusted on power holidays.

We then broaden our scope to all Indian manufacturing plants using data from the Annual Sur-
vey of Industries (ASI). We use a di�erence estimator, exploiting changes in shortages within states
over time. To address the potential endogeneity of shortages - for example, economic growth both
increases manufacturing output and worsens shortages - we instrument with changes in electricity
production from dams, which are driven by changes in the amount of water flowing into reservoirs.
We exploit a version of the ASI with consistent plant identifiers dating to 1992, which allows an
unusually long panel of Indian plants. To complement this longer panel, we gathered archival data
from India’s Central Electricity Authority on shortages, reservoir inflows, generation by hydro and
other plants, and other aspects of the Indian power sector.

Our instrumental variables estimates show that for plants that own generators, a one percentage
point increase in shortages increases the share of self-generated electricity by 0.57 percentage points,
which raises total input costs by 0.02 to 0.07 percent of revenues. Across all plants, a one percentage
point increase in shortages decreases revenues by 0.68 percent. The accompanying loss of revenue
productivity (TFPR), however, is much smaller: the e�ect is not statistically di�erent than zero,
and the confidence interval bounds it at no more than 0.29 percent. In 2005, the nationwide average
shortage was 7.1 percent, and this is very close to the nationwide average shortage over our 1992-
2010 sample. The empirical estimates multiplied by a 7.1 percent shortage translate into an input
cost increase of 0.13 to 0.5 percent of revenues and a revenue loss of 4.8 percent.
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The e�ects of shortages vary in ways predicted by the model. Only plants that self-generate
experience an increase in total energy costs, while non-generators experience much larger revenue
losses. Firms in industries with higher electric intensity are more exposed to shortages, experiencing
a larger increase in energy revenue share and a larger decrease in output. The results are essen-
tially identical under a battery of alternative specifications, including using fixed e�ects instead of
di�erences, controlling for rainfall, using an alternative measure of shortages, constructing TFPR
in di�erent ways, omitting various controls, and trimming outliers with di�erent tolerances.

We then use simulations calibrated to ASI plants and production functions to calculate the
nationwide e�ects of the 7.1 percent shortage, holding capital stock constant. The average plant
loses 4.6 percent of revenue and 1.6 percent of TFPR. The simulated e�ects on output and TFPR
are economically similar and statistically indistinguishable from the empirical estimates, which
builds confidence that the estimates are reasonable and that the model captures the first-order
issues.

As with the empirical estimates, however, simulated e�ects di�er starkly for plants with versus
without generators: plants with generators see revenue and TFPR drop by 0.4 and 0.1 percent,
respectively, while plants without generators experiences losses of 9.6 and 3.4 percent. For self-
generators and non-generators, the reasons why output losses are larger than the percent of time
shut down are the output tax and shutdown tax e�ects: shortages act like taxes that cause firms to
reduce other inputs. These input reductions are also one reason why TFPR losses are much smaller
than output losses; the other important reason is that when non-generators shut down, they lose
output but only waste non-storable inputs. Thus, while electricity shortages are a large drag
on manufacturing output, they do not in isolation explain much of the di�erence in productivity
between India and more developed economies.2

Because our instrumental variables estimates are identified o� of annual variation, they are likely
to primarily identify “short-run” e�ects of shortages, i.e. holding generator capital stock constant.
To extend this, we use additional simulations with simple assumptions about generator capital
costs to endogenize each plant’s generator takeup decision. At the current level of shortages, these
simulations confirm that despite the fact that generators largely ameliorate the negative e�ects
of shortages on revenues, TFPR, and variable profits, generators are su�ciently costly that only
a subset of plants should choose to purchase them. The simulations also show that increases in
shortages have two o�setting e�ects on output. On the one hand, the “short-run” e�ects (holding
generator stock constant) increase almost exactly linearly in shortages. On the other hand, more
frequent outages induce more plants to purchase generators and continue production during power
outages. This long-run e�ect of generator adoption substantially reduces the average impacts of
shortages.

Finally, we also use the simulations to explore how electricity shortages di�erentially a�ect small
versus large plants, which could distort the firm size distribution in developing economies. (See

2See Banerjee and Duflo (2005), Hsieh and Klenow (2009), and others for discussions.
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Tybout (2000) for a broader discussion.) Hsieh and Olken (2014) show that average products of
labor and capital are significantly lower in small firms, and Hsieh and Klenow (2012) suggest that
large vs. small plants may have di�erential access to power from the electric grid. We build on this
idea, but we focus on a di�erent channel: economies of scale in generator capacity. Our simulations
show that e�ects of outages on revenues and TFPR are 50 percent larger for plants with fewer than
100 employees compared to larger plants, primarily due to the fact that small plants are much less
likely to own generators.

The remainder of this section discusses related literature. Section 2 provides background on
the Indian electricity sector, the causes of electricity shortages, and manufacturers’ responses to
shortages. Section 3 details the production function model. Section 4 is the case study of textile
manufacturing in western India, using data from Bloom et al. (2013). Sections 5 and 6 present
the ASI data and empirical results. Section 7 details the counterfactual simulations, and Section 8
concludes.

1.1 Related Literature

Our paper builds on an extensive literature that estimates the economic e�ects of investment in
electricity, transportation, and other types of infrastructure. One early group of studies examines
the e�ects of infrastructure investment on growth in panel data from U.S. states, including Aschauer
(1989), Holtz-Eakin (1994), Fernald (1999), Garcia-Mila, McGuire, and Porter (1996); see Gramlich
(1994) for a review. Easterly and Rebelo (1993), Esfahani and Ramirez (2002), and Roller and
Waverman (2001) carry out analogous studies using cross-country panels.

This literature has faced two basic problems. First, infrastructure spending is econometrically
endogenous to economic growth. There could be reverse causality: fast growth increases tax rev-
enues, which allow more infrastructure spending. There is also economic endogeneity: infrastruc-
ture may be specifically allocated to places that are growing more quickly or slowly. Second, using
aggregate infrastructure spending or quantity as the independent variable often hides important
variation in e�ects between infrastructure of di�erent types or quality levels. In the Indian con-
text, for example, spending on power plants does not necessarily translate into electricity provision,
because plants are frequently o�ine due to mechanical failure or fuel shortages.

Our paper is part of a recently-growing literature that evaluates the e�ects of infrastructure
by combining microdata with within-country variation generated by natural experiments. This
includes Banerjee, Duflo, and Qian (2012), Donaldson (2012), and Donaldson and Hornbeck (2013)
on the e�ects of railroads in China, India, and the United States, Duflo and Pande (2007) on
irrigation dams in India, Jensen (2007) on information technology, Baisa, Davis, Salant, and Wilcox
(2008) on the benefits of reliable water provision in Mexico, and Baum-Snow (2007, 2013), Baum-
Snow, Brandt, Henderson, Turner, and Zhang (2013), and Baum-Snow and Turner (2012) on
urban transport expansions in China and the United States. A subset of this literature focuses
on electricity supply: Chakravorty, Pelli, and Marchand (2013), Dinkelman (2011), Lipscomb,
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Mobarak, and Barham (2013), Rud (2012a), and Shapiro (2013) study the e�ects of electricity grid
expansions, while Alby, Dethier, and Straub (2011), Foster and Steinbuks (2009), Steinbuks (2011),
Steinbuks and Foster (2010), Reinikka and Svensson (2002), and Rud (2012b) study firms’ generator
investment decisions. Several recent papers focus specifically on Indian electricity supply: Ryan
(2013) estimates the potential welfare gains from expanding transmission infrastructure, Cropper,
Limonov, Malik, and Singh (2011) and Chan, Cropper, and Malik (2014) study the e�ciency
of Indian coal power plants, and Abeberese (2012) tests how changes in electricity prices a�ect
manufacturing productivity.

Three recent papers study the e�ects of blackouts on manufacturers. Fisher-Vanden, Mansur,
and Wang (2013) show that when shortages become more severe, Chinese firms purchase more
energy-intensive inputs, but they do not self-generate more electricity. Zuberi (2012) estimates
a dynamic model of manufacturing production using data from Pakistan, showing how firms re-
allocate production to non-shortage periods. Alam (2013) studies how India’s steel vs. rice milling
industries respond di�erently to blackouts. Relative to these important papers, our study benefits
from particularly clean data and identification: we have a clear case study using the high-quality
textile plant data from Bloom et al. (2013), newly-gathered archival data on the severity of short-
ages across Indian states, and an instrument that addresses the endogeneity of blackouts with
respect to growth. Our paper also benefits from the way that we integrate theory and empirics:
our model formalizes the major channels through which shortages a�ect production, and the close
correspondence between simulation and empirical results builds confidence in the estimates.

2 Background

2.1 Power Sector Data

Our power sector data are from India’s Central Electricity Authority (CEA). Many of the same
types of data available online from the U.S. Energy Information Administration are also collected
by the CEA. Unfortunately, however, the online data are incomplete, and the hard copies of some
printed materials have been misplaced, so data have to be hand-collected from CEA sta�. With
the cooperation of CEA management and the help of research assistants in New Delhi, we were
able to compile, digitize, and clean about 25 years of data for this and related projects. Table 1
details these power sector variables and other state-level data.3

The primary measure of electricity shortages is the percent energy deficit reported in the Load
Generation Balance Report. Analysts at CEA and Regional Power Committees estimate the quan-
tity that would be demanded for each state and month at current prices in the absence of shortages.
The state-by-year sum is our “Assessed Demand” variable. “Shortage” is the percent di�erence be-
tween this counterfactual quantity demanded and the actual quantity supplied. In the 2011-2012

3Throughout the paper, we use the word “state” to refer to both states and Union Territories.
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fiscal year, nationwide shortage was 8.5 percent, and shortages average 7.2 percent over the sample
period. The CEA also estimates “Peak Shortage,” an analogous measure of power shortage in peak
demand periods. While (total kilowatt-hour) Shortage is more appropriate for our analysis, Peak
Shortage and Shortage are highly correlated, with an R2 of 0.5, and robustness checks show that
results are similar when we use Peak Shortage instead of Shortage.4

From an annual report called the Review of the Performance of Hydro Power Stations, we
observe inflows into reservoirs behind 22 major dams covering about 40 percent of national hydro-
electric capacity. From the CEA’s General Review, we observe each state’s total annual electricity
generation by fuel type, including hydroelectric plants. From the General Review, we also collected
total quantity of electricity sold by utilities to end users for each state and year.

Aside from these electricity market variables, our empirical analysis also uses weather and
temperature data from the Meteorological Department of the National Climate Centre of India.
These data provide daily average temperatures and rainfall at one-degree gridded intervals across
India. Using state border coordinates, we associate the grid points with particular states to arrive
at annual state-level measures. Cooling degrees is a commonly-used correlate of electricity demand;
it is the di�erence between the day’s average temperature and 65 degrees Fahrenheit, or zero if the
day’s average temperature is below 65.

2.2 Reasons for Systemic Shortages

As of February 2013, India had 214 gigawatts of utility-scale power generation capacity, or about
one-fifth the US total (CEA 2013). Of this, 58 percent was coal, nine percent was natural gas, and
18 percent was hydro-electric. While power generation has been open to private investment since
1991, 70 percent of electricity supply remains government owned: 40 percent is owned by state
governments, and 30 percent is owned by central government entities. Although some retail distri-
bution companies have been privatized, most of distribution is managed by state-run companies,
which are often called State Electricity Boards (SEBs).

The proximate reason for shortages is that distribution companies cannot raise retail prices
during peak demand times in order to clear the market. In fact, conditional on state and year
e�ects, there is no correlation between shortages and the median electricity price paid by ASI plants.
Aside from being stark evidence on how prices do not adjust to supply and demand conditions, this
also means that the e�ects we estimate are caused by input shortages, not by input price changes.

There are several underlying systemic reasons for shortages. The first is the “infrastructure
4Although it is likely that shortages are measured with error, correlations with independent data suggest that

the CEA’s estimates contain meaningful information. Alam (2013) shows that Peak Shortage is correlated with her
measure of blackouts based on variation in nighttime lights measured by satellites; she does not report a correla-
tion with Shortage. In the World Bank Enterprise Survey, plants in higher-Shortage states report a larger share of
self-generated electricity and are more likely to report that electricity is their primary obstacle to growth. Further-
more, our empirical results show that Shortages are positively correlated with hydroelectric supply and correlated in
theoretically-predicted ways with self-generation and other outcomes in the ASI.
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quality and subsidy trap” (McRae 2013): distribution companies provide low-quality electricity to
consumers, who tolerate poor service because they pay very low prices, distribution companies’
losses from low prices are covered by government subsidies, and politicians support the subsidies
to avoid voter backlash. At least since the 1970s, State Electricity Boards have o�ered un-metered
electricity at a monthly fixed fee and zero marginal cost to agricultural consumers, largely to run
well pumps (Bhargava and Subramaniam 2009). In 2010, the national average retail electricity cost
paid by agricultural consumers was 1.23 Rupees per kilowatt-hour (Rs/kWh), against Rs 4.78 for
industrial consumers and 3.57 Rs/kWh for all consumers. (The exchange rate is about 50 Rupees
per dollar, and the average electricity price across all consumers in the United States is about 10
cents/kWh.)

Distortions in pricing are relevant only for consumers who actually pay for electricity. Twenty-
six percent of electricity generated in India in 2010-2011 was lost due to “technical and commercial
losses,” meaning theft or poor transmission infrastructure. This is down from 34 percent in 2004-
2005. Distribution companies thus have no ability to charge any price, let alone raise prices, on a
significant share of electricity.

Agricultural subsidies and technical and commercial losses have led to mounting losses. The
SEBs receive large annual payments from state governments to cover these losses, and in particular
to fund the subsidies for agricultural consumers, but these payments and the cross-subsidy from
industrial customers are not su�cient to cover the SEBs’ costs. Between 1992 and 2009, the SEBs
lost $54 billion dollars (again, in real 2004 dollars). These mounting losses caused the SEBs to
reduce infrastructure investment, and degraded infrastructure further increases the probability of
blackouts. The SEBs are bailed out at irregular intervals by the government.

A second systemic reason for shortages is underinvestment in new generation capacity. For
example, after the 1991 liberalization, 200 Memoranda of Understanding were signed between
the government and investors to build 50 gigawatts of generation capacity, but less than four
gigawatts of this was actually built (Bhargava and Subramaniam 2009). Of the 71 gigawatts of
capacity targeted to be built between 1997 and 2007, only half was actually achieved (CEA 2013a).
Potential power plant investors faced concerns over both output demand and input supply. Their
main customers, the State Electricity Boards, faced serious financial problems, and it was not clear
that they would be able to honor contracts. Meanwhile, the main supplier of coal is Coal India, a
government-owned monopoly that is struggling to keep pace with demand growth.

In addition, the existing capacity is systematically underutilized. Between 1994 and 2009,
Indian coal power plants were o�ine about 28 percent of the time due to forced outages, planned
maintenance, or other factors such as equipment malfunction, coal shortages, or poor coal quality.
Furthermore, when capacity is utilized, it is substantially less e�cient than comparable plants in
the United States (Chan, Cropper, and Malik 2014).

One potential solution to problems with retail distribution companies is “open access”: allowing
consumers to contract directly with generators. The 2003 Electricity Act mandated open access,
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but in practice direct power sales to bulk consumers have not materialized (GOI 2009, 2012),
partially because states have imposed additional charges on open access consumers and have also
banned export of power to open access consumers in other states.

2.3 Variation in Shortages

These systemic factors di�er across states, generating di�erences in shortages. A substantial part
of these di�erences persist across years. Figure 1 shows that there is a negative association between
2010 per capita GDP and average shortage over the sample. This suggests that low levels of
development are associated with poor institutions, bad management, and other factors that worsen
provision of public infrastructure. However, there is substantial variation conditional on GDP.
Rajasthan, Jharkhand, and Sikkim have low GDP and low shortages, partially because their slow
GDP growth makes it easier for supply to keep up with demand. Because end-of-sample GDP is
highly correlated with GDP growth, this implies that shortages could be correlated with factors that
also a�ect manufacturing growth and productivity. This highlights the importance of instrumenting
for shortages in our empirical analysis.5

There is also substantial variation in shortages within states over time. Figure 2 shows the
time path of annual average shortage over our sample for five large states in di�erent parts of the
country. West Bengal has had consistently low shortages for the past 20 years. Maharashtra, which
is now one of the highest-shortage states, had only small shortages in the early 1990s. Karnataka,
which faced almost zero shortage in the mid-2000s, had significant shortages in the early to mid
1990s. Gujarat has reliable power supply now, but in the mid-2000s was experiencing shortages.

Several factors drive year-to-year fluctuations in shortages. On the demand side, fast or slow
economic growth over a few years can increase or decrease shortages. In addition, low rainfall in
a given year can increase farmers’ utilization of groundwater pumps, which can markedly increase
electricity demand. An unusually hot summer can also increase electricity demand to cool buildings.
On the supply side, the electricity market is still small enough that individual plants can a�ect the
aggregate supply-demand balance. Power plant outages for maintenance or due to fuel shortages
can cause electricity shortages, and new plants coming online can temporarily reduce shortages.
Later in the paper, we will discuss one other factor: variation in hydroelectric production, due to
varying rainfall in the south and varying snowpack in the north.

About 7.5 percent of electricity consumed in 2011-2012 was generated in another state. Because
distribution companies are able to procure power from other states, supply-demand imbalances do
not vary as much as they would under autarky.

5Appendix Figure A1 is a map of average shortages by state over the sample period, with higher-shortages states
colored darker.
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2.4 Industrial Electricity Use in India

A natural response to outages is to self-generate electricity. Manufacturers in India generate 35
percent of manufacturing electricity consumption, more than twice the 15.8 percent for U.S. man-
ufacturers reported in the Manufacturing Energy Consumption Survey (MECS) (U.S. DOE 2013).
Figure 3 compares manufacturing electricity generation in India to the United States. Each dot
reflects a three-digit industry code from India’s National Industrial Classification (NIC), comparing
Indian data from the Annual Survey of Industries to U.S. data from the MECS.6

The figure highlights two important facts. First, there is a strong correlation between the US
and Indian data, suggesting that the ASI self-generation data are meaningful. Many industries
in the United States - where power outages are relatively unimportant - produce a large share of
their power. For instance, in the sugar refining industry, byproducts from sugarcane processing
can be burned to generate electricity, so there is a natural complementarity between manufacturing
operations and electricity generation. Second, the mass of points along the y-axis implies that many
industries in India produce much more than their counterparts in the U.S. For instance, plastics
manufacturers in the United States produce none of their power (U.S. DOE 2013), while in India,
the plastics industry produces 70 percent of its electricity consumption.

2.5 Self-Generation and Plant Size

The reason why electricity is typically generated in large power plants instead of by individual
manufacturing plants is that there are strong economies of scale in generation. Even within the
range of manufacturing plant sizes, generator costs rise meaningfully per kilowatt of capacity. The
result is that larger plants are much more likely to self-generate power, as shown in Figure 4. This
economy of scale has important implications for how electricity shortages might a�ect the plant
size distribution, an issue which we return to later in the paper.

Table 2 compares the 2005 World Bank Enterprise Survey (WBES) responses for “small” plants
(<100 workers) and “large” plants. In the WBES, 46 percent of small plants and 83 percent of
large plants have generators. This is closely consistent with the ASI data in Figure 4, in which 42
percent of small plants and 77 percent of large plants ever self-generate. The WBES data also show
that although smaller plants may be more a�ected, large plants also report significant losses from
shortages. While small plants report that they lose eight percent of revenues to electricity input
disruptions, large plants report losing five percent. Furthermore, 26 percent of large plants report
the electricity is the biggest obstacle to growth.

6This ratio of generation to consumption di�ers slightly from Self-Generation Share because electricity generated
also includes electricity sales by manufacturing plants to others. Several industries don’t match well between the two
datasets: chemicals and refining are not broken out into many di�erent sub-industries in the public US data, so Indian
sub-industries such as Explosives, Chemicals Not Elsewhere Classified (NEC), Matches, and Perfumes and Cosmetics
are matched to “Chemicals,” a broader industry where other establishments are more likely to have feedstock for
self-generation, and thus a higher self-generation share. Similarly, Natural Gas and LPG Bottling, Coal NEC, and
Coke Oven Products are matched to “Petroleum and Coal Products,” another very broad category.
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3 Model

3.1 Setup

In this section, we develop a model of how electricity shortages a�ect manufacturers. · indexes
points in time, which we refer to as “days.” Every day, a producer uses capital K, labor L, electricity
E, and materials M to produce output Q. Qit· denotes the output for plant i in year t on day · , and
Qit ©

´
· Qit· d· is the annual aggregate. We do not model the possibility for inter-day substitution

of production; this is covered nicely by Alam (2013) and Zuberi (2012). To the extent that firms
can adjust in this way, this reduces the losses from shortages relative to what we simulate in Section
7.

The daily production function is Leontief in electricity and a Cobb-Douglas aggregate of capital,
labor, and materials, with physical productivity A:

Q = min{AK–K L–LM–M ,
1
⁄

E} (1)

The Leontief production function dictates that electricity is used in constant proportion 1
⁄ with

output. Electricity intensity ⁄ varies across industries. As is common, we assume that the Cobb-
Douglas aggregate, AK–K L–LM–M , has constant returns to scale, so –K + –L + –M = 1. Having
A inside the Cobb-Douglas aggregator ensures that electricity is used in fixed proportion to output
instead of to the bundle of other inputs.7

Since we will observe total revenues rather than physical quantities produced, we need to re-
late revenues to our production function in equation (1). As in Foster, Haltiwanger, Syverson
(2008), Bloom (2009), and Asker, Collard-Wexler, and De Loecker (2013), we consider a firm
facing a constant elasticity demand curve (CES) given by Qit = Bitp

≠‘
it , where p is the output

price. Combining the production function and the demand curve, we obtain an expression for the
revenue-generating production function Rit = min{�itK

—K
it L—L

it M—M
it , B

1
‘
it

1
⁄Eit} where �it © AitB

1
‘
it ,

and —X © –X(1 ≠ 1
‘ ), for X œ {K, L, M}. Following Foster, Haltiwanger, and Syverson (2008), we

refer to � as “revenue productivity,” or “TFPR.” We will use an elasticity of demand of ‘ = ≠10,
but we will also verify our results with other elasticities such as ‘ = ≠4, the value used by Bloom
(2009), and Asker, Collard-Wexler, and De Loecker (2013).

7We have also considered a production function which is Cobb-Douglas in K, L, M , and also E. There are two
main di�erences in this model’s predictions. First, plants that own generators will always self-generate at least a
small amount of electricity no matter how high the cost, because an input’s marginal revenue product approaches
infinity as quantity input limits to zero. By contrast, plants such as the textile factories in Section 4 sometimes
choose to shut down completely during outages even if they have generators. Second, higher costs of self-generated
electricity act like an input tax on electricity, while they act like an output tax in the Leontief-in-electricity model.

Quantitatively, the e�ects of blackouts are the same in the two models for plants that do not have generators. For
plants that have and use generators, the Cobb-Douglas model would find a smaller e�ect of shortages on output and
productivity than our Leontief-in-electricity model, since there is scope for substituting electricity with other inputs.
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3.2 Decision Variables

We assume that inputs fall into three categories: fixed, semi-flexible at the yearly level, and fully
flexible at the daily level.

1. Fixed Inputs are chosen before the current year and are exogenous in this analysis. We assume
that capital stock K is fixed.

2. Semi-Flexible Inputs can be modified at the beginning of a year t, but they cannot be modified
from day to day. For the model and simulations, we treat labor as semi-flexible, since firms
cannot hire and fire workers from one moment to the next as blackouts occur. This gives
Lit· = Lit. An alternative interpretation is that these are non-storable inputs, which cannot
be stockpiled and used another day.8

3. Fully Flexible Inputs can be modified for each day · . We treat materials and electricity as
fully flexible.

3.3 Power Outages

Power outages occur on each day with probability ”, and firms observe whether there is a power
outage before setting their fully flexible inputs. If there is not an outage, firms can purchase
electricity from the grid at price pE,G. If there is an outage, firms with generators can self-produce
electricity at price pE,S > pE,G. Firms without generators will have zero electricity use during an
outage, and thus zero output.

3.4 The Firm’s Problem

Firms have the following daily profit function �it· :

�it· =p min{Ait
1≠ 1

‘ K–K
it L–L

it M–M
it· ,

1
⁄

Eit· }

≠ pLLit ≠ pM Mit· ≠ pEEit· ,
(2)

where p, pL, pM are the prices of output, labor, and materials, respectively. Note that capital is
excluded, since it is fixed, and thus a sunk cost in the yearly decision problem.

Given the Leontief-in-electricity structure of production, cost minimization implies that for any
desired level of output Q, the firm produces at a “corner” of the isoquant where:

A
1≠ 1

‘
it K–K

it L–L
it M–M

it· = 1
⁄

Eit· , (3)

8Some of the high self-generation in Indian industries, such as in plastics, is presumably due to inputs being spoiled
during a power outage. In these industries, it might be more plausible to assume that materials are also semi-flexible
inputs.
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Given this, one can rewrite the profit function, substituting in for the optimized value of elec-
tricity:

�it· = (1 ≠ ⁄pE

p
)pA

1≠ 1
‘

it K–K
it L–L

it M–M
it· ≠ pLLit ≠ pM Mit·

= (1 ≠ ⁄pE

p
)�itK

—K
it L—L

it M—M
it· ≠ pLLit ≠ pM Mit· .

(4)

Let “ © ⁄pE

p = pEE
pQ , the electricity revenue share. Notice that if (1 ≠ “) < 0, then the firm will

choose not to produce.
There are three outcomes that can occur, depending on electricity intensity and the relative

price of electricity:

1. If p > ⁄pE,S , the firm always produces, regardless of power outages.

2. If ⁄pE,S > p > ⁄pE,G, the firm does not produce during power outages, but does produce
otherwise.

3. If p < ⁄pE,G, the firm never produces.

We ignore case (3): if firms never produce, they never appear in the data. Firms without generators
e�ectively have pE,S = Œ, so case (1) cannot arise. Of the firms with generators, those with higher
⁄ will be in case (2). In other words, higher-electricity intensity firms will be more likely to shut
down during grid power outages.9

The first-order condition with respect to materials yields:

—M (1 ≠ “) Rit·

Mit·
≠ pM = 0. (5)

This is the usual Cobb-Douglas first-order condition for materials, except that the marginal
revenue product of materials is reduced by “. Since ⁄ is constant, “ is higher when a firm self-
generates and pays a price for power of pE,S , rather than purchasing from the grid and paying pE,G.

One can thus interpret T ©
1≠⁄ pE,S

p

1≠⁄ pE,G

p

as an implicit tax on output due to self-generation, and this

tax is higher for industries which are more electricity intensive.
The marginal revenue product of materials is:

MRPM =

Y
]

[
—M (1 ≠ “) Rit·

Mit·
if no power outage

T —M (1 ≠ “) Rit·
Mit·

if power outage
(6)

9While a firm would not invest in a generator if it expected to be in case (2), unexpected changes in p, pE,S , or
pE,G could cause firms with generators to not use them.
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The first-order condition for labor is more complicated, since a firm must integrate over outage
and non-outage days when setting semi-flexible inputs. If a plant is in case (1), meaning that it
self-generates during power outages, then the first-order condition is given by:

MRPL1 = —L(1 ≠ ⁄
pE,G

p
)

5
(1 ≠ ”)RitG

Lit
+ ”T RitS

Lit

6
= pL, (7)

where RitS indicates revenue during a shortage period. This expression also includes an “output
tax” T during shortage periods. We call the reduction in the marginal revenue products of materials
and labor for self-generating plants the output tax e�ect.

For firms in case (2), i.e. firms without generators or firms that will not produce during outages
since ⁄pE,S < p, the marginal revenue product of labor is:

MRPL2 = (1 ≠ ”)(1 ≠ “)—L
RitG

Lit
= pL, (8)

where RitG indicates revenue during a non-shortage period.
This is the usual Cobb-Douglas first-order condition, except that the marginal revenue product

is reduced by (1 ≠ “) and (1 ≠ ”), the fraction of the time the plant will be down due to power
shortages. We call this reduction in marginal product of labor for non-generators the shutdown tax
e�ect.

3.5 Productivity

3.5.1 Production Function Estimation

We use the first-order condition approach to production function estimation10 to recover production
function coe�cients —L, —M , —K and “ using yearly data from the Annual Survey of Industries.
In our context, however, the first-order conditions depend on variables that vary between outage
and non-outage periods and are thus unobserved in the yearly data. Below, however, we see that
for plants that do not self-generate, the first-order conditions simplify to functions only of yearly
aggregates.

For non-self-generators, “ equals the revenue share of electricity over the year:

“ = pE,GEit·

Rit·
= pE,GEit

Rit
(9)

The latter equality holds because (1 ≠ ”)Eit· = Eit and (1 ≠ ”)Rit· = Rit: non-self-generators
use zero electricity and earn zero revenues during outages.

Similarly, the first-order condition for labor gives:
10For additional discussion, see De Loecker and Warzynski (2012) and Haltiwanger, Bartelsman and Scarpetta

(2013).
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—L = pLLit

(1 ≠ ”)Rit·

1
1 ≠ “

= pLLit

Rit

1
1 ≠ pE,GEit

Rit

. (10)

We thus have the usual Cobb-Douglas equality of —L with the revenue share of labor, except
adjusted by the inverse of one minus the electricity revenue share.11

Likewise, the first-order condition for materials yields:

—M = pM Mit·

Rit·

1
1 ≠ “

= pM Mit

Rit

1
1 ≠ pE,GEit

Rit

. (11)

Again, the latter equality holds because Mit· = (1 ≠ ”)Mit, (1 ≠ ”)Eit· = Eit, and Rit· = (1 ≠ ”)Rit

for non-self-generators.
Finally, using the constant returns to scale assumption that –K + –L + –M = 1, the capital

coe�cient is given by —K = (1≠ 1
‘ )≠—̂L≠—̂M . We use median regression to estimate these coe�cients

by three-digit industry, using only plants in the ASI that never self-generate. See Appendix A for
additional details.

3.5.2 Productivity E�ect of Shortages

With no power shortages, revenue productivity is:

Êit = rit ≠ —Kkit ≠ —M mit ≠ —Llit (12)

where lower case variables denote the logarithms of variables in upper case; i.e., xit = log(Xit).
For plants that do not have a generator or have one but choose not to self-generate, revenue is:

Rit =
ˆ

·
�itK

—K
it L—L

it M—M
it· d·

= (1 ≠ ”)1≠ 1
‘ ≠—M �itK

—K
it L—L

it M—M
it

(13)

Taking logs, this yields:

rit = —Kkit + —M mit + —Llit + Êit + (—K + —L) log(1 ≠ ”)
¸ ˚˙ ˝

Ê̂it

(14)

and since 1 ≠ ” Æ 1, log(1 ≠ ”) < 0, so shortages reduce measured revenue productivity Ê̂it relative
to Êit.

11In a production function that is Cobb-Douglas in electricity, a similar equation would hold with the absence of
the 1

1≠“ adjustment.
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If plants have generators and use them during outages, then revenue is given by:

Rit =
ˆ

·
�itK

—K
it L—L

it M—M
it· d·

= �itK
—K
it L—L

it

1
(1 ≠ ”)M—M

itG + ”M—M
itS

2
,

(15)

where MitS is the bundle of materials chosen during shortages, and MitG is the bundle of materials
chosen otherwise.

Define C as the loss in output from using di�erent bundles of materials in shortage and non-
shortage periods, relative to using the same bundle in both periods:

Cit = (1 ≠ ”)M—M
itG + ”M—M

itS

((1 ≠ ”)MitG + ”MitS)—M
. (16)

By Jensen’s inequality, C < 1, since
1
(1 ≠ ”)M—M

itG + ”M—M
itS

2
< ((1 ≠ ”)MitG + ”MitS)—M . Cit is

increasing in —M , as —M < 1 and C would be one for a —M = 1 and ‘ = ≠Œ, the linear production
case. For small ”, Cit is decreasing in ”.

This gives after combiniing terms and taking logs:

rit = —Kkit + —M mit + —Llit + Êit + cit¸ ˚˙ ˝
Ê̂it

. (17)

Since Cit < 1, cit < 0, so outages again decrease measured revenue productivity Ê̂it.
Collecting our results, we have the e�ects of shortages on measured TFPR:

Ê̂it ≠ Êit =

Y
]

[
(—K + —L) log(1 ≠ ”) If no self-generation

cit If self-generation
(18)

We call the first line the shutdown e�ect. The —L + —K term represents the share of inputs that
are not fully flexible - in this case, capital and labor. Thus, the shutdown e�ect on TFPR is just
the share of the year shut down multiplied by the share of inputs that are wasted during outages.
We call the second line the input variation e�ect.

4 Case Study: Large Textile Manufacturers

Bloom et al. (2013) study how improved management practices increased productivity at textile
plants in Gujarat, Maharashtra, and Dadra and Nagar Haveli. In the industrial areas where these
plants operate, there are scheduled “power holidays” on a given day of the week, during which
there is typically no grid electricity. As a case study to illustrate and calibrate the model, this
section uses data shared by Bloom et al. (2013) to estimate how power holidays change inputs and
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production.

4.1 Overview and Data

Bloom et al. (2013) selected an initial random sample of 66 firms from the set of textile firms
that had between 100 and 1,000 employees based in two towns near Mumbai. These 66 firms
were contacted and o�ered free consulting services, and 17 agreed to participate in the consulting
program. On average, the firms have 270 employees and revenues of $7.5 million per year. The
data include 22 plants owned by the 17 firms.

The electric distribution companies spread power holidays throughout the week in order to
reduce load on all days. Fourteen of the plants are in areas with power holidays on Fridays, while
the remainder have holidays spread throughout the week. Appendix Table A1 presents information
on plant locations and scheduled power holidays, while Appendix Table A2 summarizes the data.

The plants typically operate continuously: 24 hours a day, every day. Before each power holiday,
however, plant managers can choose to reduce output or fully shut down for all or part of the day.
As they do this in advance, they can inform some or all workers that they need not come to work.
Production workers are on 12 hour shifts, and they are paid if and only if they are called in. In the
context of our model, labor is thus fully flexible. Similarly, materials such as yarn are fully flexible:
they can be stored if the plant does not operate.

Physical output Q is measured in “picks,” where one pick is a single rotation of the weaving
shuttle. Figure 5 presents the distributions of output at an example plant for each of the seven
days of the week. The dashed line is output on Fridays, when the plant has power holidays, while
the solid lines represent output on each of the other six days. The distributions are very similar for
the six non-holidays, with a mode of about 12,000 picks per day. On most power holidays, output
does not appear to di�er. On some power holidays, however, output is roughly half, as the plant
cancels one 12-hour shift. Output drops to zero on a small share of power holidays.

4.2 Empirical Estimates

4.2.1 Di�erences in Output on Power Holidays

We now estimate the reduction in output on power holidays. We observe physical output Qi· for
each plant i on each day · . ÂQi· is output normalized by plant i’s sample average production:
ÂQi· = Qi· /Qi.12 „i is a vector of 22 plant indicators, while ◊· represents 1339 day-of-sample
indicators. The estimating equation is:

12We normalize because production varies substantially within and between the di�erent plants, and we do not
want the coe�cient estimates to be driven by outliers. This normalization is preferable to using ln(Qi· ) or ln(Qi· +1)
as the dependent variable because Qi· = 0 on some days, and this large variation makes it incorrect to interpret the
coe�cients as approximately reflecting percent changes in Q.
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ÂQi· = fl · 1(Power Holidayi· ) + „i + ◊· + Ái· (19)

Table 3 presents the results of this regression, with standard errors clustered by plant. Column
1 presents the above specification, except without the day-of-sample controls ◊· . Column 2 is the
exact specification above. These columns show that average production is 7.4 to 9.7 percent lower
on power holidays.

Grid power is not necessarily o� for all 24 hours of the scheduled power holiday: outages are
typically shorter during the winter months when market-level electricity demand is lower. During
all months, especially the summer months when electricity demand is higher, there can also be
unscheduled power cuts on any day. Column 3 measures this by estimating how production on
power holidays and non-holidays varies with the monthly CEA shortage estimate for the state
in which each plant is located. On non-power holidays, output is not statistically significantly
associated with shortages. This is consistent with the fact that when power cuts occur on non-
power holidays, plants typically self-generate instead of shutting down, as labor input for the day
has already been fixed. In Column 3, the coe�cient on 1(Power Holiday) represents the intercept
in months when the CEA estimates zero shortages; this is statistically zero. Output on power
holidays decreases by 0.6 percentage points as shortages increase by 1 percentage point.

Column 4 includes power holiday-by-month controls, to control for any time-varying factors
such as demand or diesel prices. This does not change the results relative to Column 3. These
results suggest that the managers have some ability to predict when there will be more electricity
on a scheduled power holiday, and when they expect more electricity they call in more workers and
produce more. This highlights that the e�ects of scheduled power holidays on production depends
on the severity of the underlying shortage that the holidays are designed to address.13

4.2.2 Input Cost E�ect

We now estimate the input cost e�ect: the increase in electricity costs when power holidays force a
switch from grid electricity to self-generated electricity. We observe total energy costs - electricity
plus generator fuel - at the monthly level, not for each day. After conditioning on total monthly
production, the relationship between energy costs and the share of production on power holidays
tells us the incremental marginal cost of self-generated electricity.

Let Gim represent the share of output produced on power holidays at plant i during month
m. We denote ÂFim and ÂQim as plant i’s energy costs and output for month m, normalized by the
plant’s average monthly values. Analogous to above, „i is a plant fixed e�ect, and ◊m is a full set of
month-of-sample dummies. ”im denotes the CEA’s estimated shortage in plant i’s state in month
m. The regression is:

13Our model does not capture potential e�ects of electricity shortages on output quality, and so we would understate
productivity losses if shortages a�ect output quality along with quantity. However, we have tested this using two
measures of output quality, finding no statistical di�erence on power holidays vs. non-holidays.
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ÂFim = ÷1Gim + ÷2 ÂQim + ÷3”im + „i + ◊m + Áim (20)

Table 4 presents the results, again with standard errors clustered by plant. Column 1 shows the
unconditional correlation between energy costs and power holiday output share, while Columns 2-4
progressively add controls for month-of-sample, normalized output, and shortages. The estimates
imply that shifting 100 percent of production from non-power holidays to power holidays would
increase monthly energy costs by 61 to 81 percent. This is closely consistent with the World Bank
Enterprise Survey data in Table 2, which suggest that grid electricity costs an average of Rs 4.5
per kilowatt-hour, while generator electricity costs Rs 7 per kilowatt-hour, or 56 percent more.

4.3 Estimating Losses from Power Holidays

Table 5 uses the empirical estimates to calculate the input cost e�ect, output loss, and TFPR
reduction from power holidays at this set of plants. The top panel calculates the input cost e�ect.
This is the proportion of electricity that is self-generated, which we assume to be equal to the share
of production on power holidays (G), multiplied by the proportional increase in energy costs when
self-generating (‚÷1) and by the sample median14 energy revenue share. Power holidays increase
input costs by 0.32 percent of revenues. This is e�ect is small, both because the energy input
revenue share is small and because only one-ninth of production is on power holidays.

Estimating output losses requires the additional assumption from Section 3 that production
is not substitutable across days. During peak textile production seasons and when plants have
impending delivery requirements, plants run at full capacity, and there is no opportunity for in-
tertemporal substitution. By contrast, if plants can substitute production across days during
periods when they are operating at less than full capacity, they should produce when lower-cost
grid electricity is available. In this case, the reductions in output associated with power holidays
would not reflect a reduction in total output caused by power holidays - instead, they would repre-
sent inter-day shifting of the same amount of production. If plants do substitute production across
days, estimated output losses assuming static production thus overstate the true output losses. In
additional regressions, however, we see little evidence that intertemporal substitution causes the
static model to overstate output losses.15

Under the static production assumption, the middle panel estimates that power holidays reduce
output by 1.1 percent. This is the product of 1/7 days that are power holidays and an estimated
7.4 percent output reduction on those days. While this is meaningful, it is small relative to average

14We use median instead of mean to avoid bias due to potential reporting error for revenues.
15More specifically, we test for inter-day substitution in two ways. First, we find that days of week just before

power holidays do not have higher output, and the day immediately after a power holiday actually tends to have
slightly lower output, which suggests delays in restarting plants. Second, we exploit the fact that it is more di�cult
to substitute production away from power holidays when already producing closer to capacity. Interday substitution
would thus cause more output reduction during periods when plants are producing less. By contrast, we find that
output reductions are larger when plants are producing more.
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output losses estimated later for all Indian plants, because this sample of textile plants all own
generators and thus often do not shut down during outages. To the extent that there is any
undetected inter-day substitution, this only strengthens the qualitative conclusion that the output
losses are small for these plants.

The bottom panel presents measured TFPR losses under the assumption that at a given time on
a power holiday, a plant has either shut down completely or is operating at the typical production
rate for a non-power holiday. Under this assumption, there is no input variation e�ect, and measured
TFPR losses accrue through the shutdown e�ect. Under constant returns to scale and using the
assumption that labor and materials are fully flexible, Equation (18) for the measured TFPR losses
from the shutdown e�ect can be modified to obtain the measured TFPR loss from power holidays:

Ê̂it ≠ Êit = (—K) log(1 ≠ Â”) (21)

In this equation, Â” is the percent of time shut down, which under our assumptions equals the
1.1 percent output loss. We take —K from the ASI for textile plants (NIC 1987 code 230), which
is slightly less than five percent. (Variable profits are relatively low in this industry.) The table
shows that power holidays reduce measured TFPR by 0.05 percent. Intuitively, this e�ect is so
small because the plants rarely shut down, and when they do they have the flexibility to reduce
the vast majority of their inputs.

While these plants provide a clear case study of the model, the e�ects of blackouts might be
smaller here compared to the average plant in India, because labor and materials are both storable
during planned power holidays, these plants all can self-generate instead of needing to always shut
down, and textile plants are only moderately electricity intensive. To learn more about the broader
Indian manufacturing sector, we now to turn to data from the Annual Survey of Industries.

5 Annual Survey of Industries: Data and Empirical Strategy

5.1 Data

We use India’s Annual Survey of Industries (ASI) from 1992-93 through 2010-11. The survey is
split into two schemes: the census scheme and the sample scheme. In each year, the census scheme
surveys all manufacturing establishments with over 100 workers, while the sample scheme surveys
a rotating sample of one-third of establishments below that size.16 A recent release of the ASI
includes establishment identifiers that are consistent across years back to 1998-99. We also have

16The sampling rules have changed somewhat over time. The census sector, from which 100 percent of factories
are sampled, was factories with 50 or more workers (100 or more if without electric power) until 1986-1987, 100 or
more workers between that year and 1996-1997, 200 or more workers from then until 2003-2004, and then 100 or
more workers since then. One-fifth of smaller factories were sampled since 2004-2005. The selection was done as a
rotating panel such that plants are surveyed approximately once every third (or fifth) year, subject to constraints
that su�cient numbers of factories had to be sampled to assure representativeness at the state and industry level
(MOSPI 2009).
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a version of the ASI data that contains consistent establishment identifiers for years before 1998.
Combining these two datasets gives us an establishment-level panel for our entire sample period.

The ASI is comparable to manufacturing surveys in the United States and other countries. It
contains several modules, covering value of fixed capital stock and inventories, loans and cash flow
information, cost and quantities of labor, materials, fuels, and other inputs, value of output, and
other occasional questions. The reporting period is the Indian fiscal year, which is April 1 through
March 31; when we refer to an individual survey year, we refer to the calendar year when the fiscal
year begins. All financial amounts are deflated to constant 2004 Rupees. Appendix A gives more
detail on the ASI data preparation and cleaning.

Table 6 gives descriptive statistics for the full ASI dataset.17 There are 616,129 plant-by-
year observations. The median plant employs 34 people and has gross revenues of 20 million
Rupees, or slightly less than $500,000. One of the benefits of the ASI over other manufacturing
datasets from India and other countries is that we observe the physical quantity of each plant’s
total electricity purchases and self-generation in each year. The sum of these two variables, minus
reported sales of electricity, yields Electricity Consumed. Self-Generation Share equals Electricity
Self-Generated divided by Electricity Consumed. Energy Revenue Share is the value of electricity
and fuels purchased divided by revenues.

The mean plant uses 0.013 kWh per Rupee of revenues, which equals 5.7 percent of revenues at
typical electricity prices of 4.5 Rupees/kWh. 1(Self-Generator) is an indicator variable for whether a
plant self-generates electricity in at least one year; this is the variable graphed non-parametrically
in Figure 4. We combine the ASI with the state-by-year electricity market and weather data
summarized in Table 1.

5.2 Estimation Strategy

Define Yijst as an outcome at plant i in industry j in state s in year t. Our primary specifications
focus on four outcomes: self-generation share, energy revenue share, revenues, and revenue produc-
tivity. We use a di�erence estimator for our primary specifications, although we present robustness
checks using the fixed e�ects estimator. The di�erence estimator is conceptually preferable because
it identifies coe�cients using shorter-term variation, consistent with our focus on identifying the
short-run e�ects of shortages.

Because of non-response and the ASI’s irregular sampling procedure, the data form an unbal-
anced panel with plants observed at irregular intervals. Sixty percent of intervals are one-year,
while 91 percent are five years or less. Let �i denote the di�erence operator, and define ”st as
electricity shortage in state s in year t, ranging from zero to one. The variable �i”st is the di�er-

17The table excludes “within-plant outliers.” As discussed in Appendix A, these are observations of logged inputs
or outputs that are flagged because they di�er from both preceding and subsequent observations by more than 3.5. A
one-time annual jump of 3.5 natural logs is almost certainly a reporting error, although robustness checks in Appendix
B.3 show that the estimates are not sensitive to either tightening or eliminating this restriction.
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ence between the shortage in year t and the shortage in the year of plant i’s previous observation.
We include indicators ◊it for each “year di�erence,” by which we mean the initial and final year
combination for each di�erenced observation. For example, there is a ◊it indicator that takes value
1 for all plants observed in 2008 whose preceding observation was in 2005, and another ◊it indicator
for all plants observed in 2008 whose preceding observation was 2004, etc. The variables µjt and
Âs are vectors of indicators for two-digit industry-by-year and state, respectively.

The estimating equation is:

�i ln Yijst = fl�i”st + µjt + ◊it + Âs + Áijst (22)

To increase power, all observations are weighted equally in the empirical estimates. Notwith-
standing, we will show that estimates are identical when using the ASI sampling weights, and the
simulations in Section 7 use the ASI sampling weights to construct estimates that are representative
of registered plants nationwide. Standard errors are robust and clustered at the level of variation
in the year di�erence �i”st.18

In the model, electricity shortages a�ect firms only through input availability: demand is un-
a�ected by shortages. This would reflect the case in which manufacturers sell into national or
international markets. In reality, many manufacturers sell to customers within the same state
whose demand might also be a�ected by shortages. Thus, our empirical estimates capture e�ects
of shortages through both input availability and within-state demand. If there are geographic
spillovers across states, perhaps as downstream consumers substitute away from plants experienc-
ing increased shortages, our estimates measure a reallocation of output across states, not a loss of
aggregate output.

These empirical estimates are “reduced form” in the sense that they may capture additional
e�ects not contemplated in the model in Sections 3 and 7. For example, if plants substitute
production across days in response to outages, our empirical estimates capture the net e�ect of
outages on output and other variables over the year. The estimates reflect the causal impact of
annual variation in blackouts except in the unlikely event that plants substitute production across
years. As another example, the empirical estimates let the data tell us whether materials and labor
are semi-flexible or fully flexible.

18Sample sizes will di�er from the observation counts in Table 6 for precisely three reasons. First, the di�erence
estimator drops the approximately 107,000 plants observed only once. Second, the states of Jharkhand, Chhattisgarh
and Uttaranchal (now Uttarakhand) were established in 2001 from parts of Bihar, Madhya Pradesh and Uttar
Pradesh, respectively. State-level measures of shortages and hydroelectric generation thus do not represent consistent
areas before vs. after the splits, so we drop observations that are di�erences of years that span this split. Third,
when examining self-generation share or energy revenue share as the outcome in our basic specifications, we exclude
the 46 percent of plants that never self-generate electricity.
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5.3 Instruments and First Stages

Shortages could be econometrically endogenous to some outcomes, in particular output and pro-
ductivity. For example, improvements in economic conditions within a state could increase pro-
ductivity and output in manufacturing and other sectors, and the resulting increase in electricity
demand could cause shortages. Furthermore, shortages could also be measured with error, causing
attenuation bias.

To address this, we need an instrument that causes shortages to vary but is otherwise unrelated
to manufacturing. We instrument using hydroelectricity generation, which varies from year to year
due to the availability of water in reservoirs. Hst is the predicted share of state consumption that
can be fulfilled by hydroelectric generation in state s in year t. As there are positive shocks to
reservoir inflows, and thus to hydroelectricity generation, a larger share of state consumption can
be fulfilled, and shortages should decrease. Intuitively, the denominator should be total electricity
consumption in state s in year t, but this is determined partially by the extent of shortages. Thus,
the denominator is national electricity consumption multiplied by the average ratio of state to
national consumption for all years of the sample:

Hst = Hydro Electricity Productionst (GWh)
C

National Electricity
Consumptiont (GWh)

D

·
C

Average Ratio of State
to National Consumptions

D (23)

Figure 6 illustrates the cross-state variation in the importance of hydroelectricity. While some
hydro-heavy states are small mountainous regions such as Himachal Pradesh, Meghalaya, and
Uttaranchal, other states such as Andhra Pradesh, Karnataka, Kerala, Orissa, and Punjab are both
large and rely heavily on hydroelectricity. Appendix Figure A2 shows hydroelectricity generation
over the study period for these states. In essence, the instrument is the product of the cross-section
variation in Figure 6 with the time series variation in Appendix Figure A2.

Karnataka, a large state in southwest India, is the country’s largest producer of hydroelectricity.
Figure 7 plots the hydro instrument and shortages for Karnataka over the study period. The two
variables are highly negatively correlated: more hydro generation reduces shortages.

Column 1 of Table 7 presents an analogue to the first stage using only first-di�erenced state-
level data. Specifically, we regress the change in shortage on the change in the hydro instrument,
controlling for state and year fixed e�ects. A one percentage point increase in hydro production
relative to predicted demand decreases shortages by 0.048 percentage points. If a state’s own hydro
plants were its only source of electricity, this coe�cient should be one. In practice, states o�set the
loss of hydro production by increasing generation from coal and other sources and by importing
from other states.

The exclusion restriction is that changes in hydroelectricity production are associated with
changes in manufacturing outcomes only through their e�ects on electricity shortages. In theory,
there are at least two reasons why this identifying assumption might be violated. First, there
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could be reverse causality: hydroelectricity generation could respond in equilibrium to changes
in electricity demand associated with manufacturing outcomes. This is relatively unlikely: the
marginal cost of hydroelectricity production is relatively low, and annual production is constrained
by the amount of water available behind reservoirs. By contrast, the exclusion restriction would
be violated for production technologies such as coal power plants that have higher marginal costs,
because their output is determined in equilibrium with demand.

To substantiate this point, we gathered data from the Central Electricity Authority on inflows
into 22 large reservoirs. Separately for each state with at least one reservoir, we regressed annual
hydroelectricity generation on inflows and construct the fitted values. The R2 of the regression of
actual on predicted hydro generation is 0.86; this is illustrated in Appendix Figure A3. While the
R2 should not be 1 because the data include reservoirs that supply only 40 percent of India’s hydro-
electric generating capacity, the very high R2 indicates that inflows are the primary determinants
of hydroelectric production. Note that it is not possible to directly use inflows as our instrument
because only 2/5 of states that have positive hydro generation have reservoirs in the inflows data.

The second reason why the identifying assumption might be violated would be if rainfall or some
other third variable influences both hydroelectricity generation and manufacturing productivity or
input or output prices. To address this, we can simply control for rainfall in our regressions, along
with cooling degrees, which are correlated with rainfall and may a�ect agriculture. Although rainfall
is associated with the hydro instrument, Column 2 of Table 7 shows that conditioning on rainfall
and cooling degrees has very little impact on the state-level estimates aside from increasing the
standard error. By contrast, Column 3 shows that rainfall is associated with agricultural output,
while there is a positive but not statistically significant association between the instrument and
agricultural output.

Columns 4 and 5 of Table 7 present a placebo test that provides even more direct support for
the exclusion restriction. For an instrument to be valid, it needs to a�ect electricity supply but
should not be associated with demand. To test this, we exploit the fact that the CEA reports the
two components of shortages: assessed quantity demanded at current prices as well as the actual
quantity supplied. Column 4 shows that the instrument is associated with quantity supplied, but
column 5 shows that it is not associated with assessed demand. It is di�cult to conceive of a
story under which the exclusion restriction is violated but the instrument is not associated with
electricity demand.

6 Empirical Results

6.1 First Stages

Table A3 in Appendix B.2 presents first stage estimates using microdata. In theory, the coe�-
cient estimates might di�er from the state-level results in Table 7 because the microdata weights
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states with more plants more heavily and because the microdata includes one-year and multi-year
di�erences instead of only one-year di�erences. In practice, the microdata coe�cients are slightly
larger in absolute value but roughly comparable, ranging from -0.100 to -0.139. The instruments
are powerful: the cluster and heteroskedasticity-robust Angrist-Pischke F-statistics range from 39
to 53.19 For comparison, the Stock and Yogo (2005) critical values for one instrument and one
endogenous regressor are 8.96 and 16.38 for maximum 15 and 10 percent bias, respectively.

Appendix Tables A4 and A5 present first stages for the alternative specifications in the up-
coming section that potentially have the least power. These two tables respectively consider the
sample when self-generation share is the outcome variable, which is the smallest sample, and when
log revenue is the outcome variable, which has the smallest F-stat in Appendix Table Table A3.
When conditioning on rainfall and cooling degrees, including only one-year di�erences, or testing
interactions with shortages, the smallest F-statistic is 15.52. When clustering by state instead of by
state-by-year di�erence, the F-statistics are 12.52 and 7.51 for self-generation share and log output,
respectively. In additional unreported regressions using two-way clustering by state-by-(final year
of the year di�erence) and state-by-(initial year of the year di�erence) based on the methodology
of Cameron, Gelbach, and Miller (2006), these F-statistics are 21.6 and 15.2, respectively.

6.2 Regression Results

Table 8 presents results of Equation (22) for four di�erent outcomes: self-generation share, natural
log of energy revenue share, natural log of revenues, and natural log of TFPR. Panels A and B
present OLS and instrumental variables results, respectively. The IV estimates are very reasonable.
Columns 1 and 2 test for impacts on energy input, including in the sample only the 54 percent of
plants that ever self-generate. Column 1 shows that a one percentage point increase in shortages,
which would increase the shortage variable from (for example) 0.1 to 0.11, causes a 0.57 percentage
point increase in the share of self-generated electricity. If shortages a�ected manufacturers and all
other consumers equally and manufacturing electricity demand were fully inelastic, this coe�cient
should be 1. In reality, state electricity boards may impose more or less of the marginal shortage
on manufacturers instead of residential and agricultural consumers, and when manufacturers are
faced with shortages, they do not make up for them one-for-one with self-generation. Column 2
shows that a one percentage point increase in shortages causes a 0.64 percentage point increase in
energy revenue share.

Either of columns 1 and 2 can be used to derive an estimate of the input cost e�ect for plants
that self-generate. If pE,S ≠ pE,G=2.5 Rs/kWh (from the World Bank Enterprise Survey) and the
mean electric intensity is 0.013 kWh/Rupee (from Table 6), a one percentage point increase in
shortages translates to a 1%◊0.57◊2.5◊0.013¥0.018 percent unit cost increase. In other words,

19The Angrist-Pischke F-statistics are identical to the Kleibergen-Paap F-statistics when there is one endogenous
variable. The Angrist-Pischke F-statistics are more appropriate in the parts of Appendix Tables A4 and A5 that test
for weak identification of individual endogenous regressors in regressions with multiple endogenous regressors.

25



a one percentage point increase in shortages increases self-generation by 0.57 percentage points,
which increases average electricity costs by 0.57%◊2.5 Rs/kWh¥0.0142 Rs/kWh, which increases
total unit costs by 0.0142 Rs/kWh*0.013 kWh/Rs¥0.018 percent of revenues. Similarly, using the
fact that the mean energy revenue share is 0.11, the point estimate in Column 2 suggest that a one
percentage point increase in shortages increases energy input costs by 0.64%*0.11¥0.07 percent of
revenues. While these two estimates di�er slightly, both imply that the input cost increase imposed
on plants with generators is relatively small.

Columns 3 and 4 include all ASI plants, regardless of whether they self-generate or not. The IV
estimates in column 3 show that a one percentage point increase in shortages causes a 0.68 percent
decrease in revenues. Hypothetically, if no plants self-generate and there were no shutdown tax
e�ect (in which firms reduce semi-flexible inputs in response to shortages), this coe�cient would
be one. In reality, self-generation reduces the revenue loss for plants with generators. If firms can
foresee and respond to changes in shortages driven by hydro generation, this would be o�set by the
fact that both self-generators and non-generators reduce semi-flexible inputs through the output
tax e�ect and shutdown tax e�ect, respectively.

Column 4 shows that shortages have statistically zero e�ect on TFPR. The 90 percent confidence
interval bounds the TFPR losses from a one percentage point increase in shortages at no more than
a 0.29 percent decrease in TFPR. In our model, TFPR losses should be much smaller than output
losses because the primary cause of TFPR loss is waste of inputs that are not fully flexible, and
most inputs are fully flexible - the average input cost share for materials across all plants is 70
percent. Thus, the fact that TFPR losses are too small to detect is fully consistent with our model.

The OLS estimates are statistically and economically di�erent from the IV estimates, and the
direction suggest two forms of bias. With self-generation share in Column 1, we expect less omitted
variables bias in OLS. The fact that the IV estimates are substantially larger than OLS suggest
that the instrument corrects measurement error in the shortage variable. By contrast, with output
and TFPR in Columns 3 and 4, we expect potential upward bias in OLS, because economic growth
can cause shortages. Indeed, the OLS coe�cients are biased upwards from the IV coe�cients, and
TFPR actually appears to be positively associated with shortages. This shows the importance of
using instrumental variables: without the IV, one might erroneously conclude that shortages cause
TFPR to increase.

6.2.1 Robustness Checks and Fixed E�ects Estimates

Appendix B.3 shows that the estimates in Table 8 are remarkably robust. None of the estimates
di�ers statistically or loses statistical significance when weighting by the ASI sample weights, omit-
ting the industry-by-year controls µjy, eliminating or tightening the flags for within-plant outliers,
controlling for rainfall and cooling degrees, or using the CEA’s estimated Peak Shortage instead
of Shortage. When using only one-year di�erences, this focuses estimates on larger census scheme
plants whose output is less a�ected by shortages and also reduces the sample size. This slightly
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reduces the point estimate of e�ect on output and increases the standard error; the resulting coef-
ficient is statistically indistinguishable from both the base case estimate and from zero. Clustering
at the state level instead of state-by-year di�erence increases the standard errors slightly but does
not a�ect statistical significance. Appendix Table A14 shows that results are qualitatively similar
under five di�erent approaches to calculating production functions and TFPR.

Appendix B.4 estimates an analogue to Equation (22) using fixed e�ects instead of di�erences,
including state-specific linear trends20 and clustering by state to address potential serial correlation
in errors. The results are remarkably similar to Table 8, and none of the IV estimates di�er
statistically. However, the standard errors are slightly wider, and the first-stage F-statistics are
smaller. For these reasons, we focus on results from the di�erence estimator.

6.3 Moderators and Alternative Outcomes

The model in Section 3 generates predictions for how shortages should di�erentially a�ect di�erent
types of plants. Electricity-intensive industries should be more likely to shut down instead of self-
generate during shortages, meaning that revenues and TFPR should drop more. Furthermore,
shortages should have much smaller e�ects on revenues and TFPR for plants that self-generate.
Table 9 interacts the change in shortages with indicators for self-generation and whether the plant’s
industry is above-median electricity intensity; the regressions also include lower-order interactions
with ◊iy and Âs.

We fail to reject that more electric-intensive plants change self-generation the same amount
in response to shortages, although their energy revenue share increases more. Shortages reduce
output more for electric intensive plants and reduce output less for self-generators. The point
estimates suggest that non-generators’ revenues decrease more than one-for-one with shortages;
this is consistent with the model, where non-generators lose output due to the shutdown e�ect and
additionally reduce semi-flexible inputs due to the shutdown tax e�ect. These standard errors are
wider, however, and coe�cient magnitudes should be interpreted with caution. Precision would be
further reduced if we cut the data more finely or studied individual industries in isolation.

Table 10 tests for e�ects on other outcomes. The point estimate in column 1 suggests that
plants reduce labor input in response to shortages, but the e�ect is not close to being statistically
significant. Column 2 shows that a ten percentage point increase in shortages is associated with
an 8.53 percent decrease in materials input. Column 3 shows that shortages decrease the materials
to labor ratio, consistent with columns 1 and 2. These estimates provide support for our modeling
assumption in Section 7 that materials are fully flexible, while labor is not. Column 4 tests for

20Although excluding state-specific linear trends does not a�ect the non-IV estimates, the IV first stages have no
power when excluding the state-specific linear trends. The reason for this is suggested in Figure 7: the share of hydro
in total electricity production has decreased over time in Karnataka and other states, so while annual changes in the
hydro instrument are negatively associated with changes in shortages, levels of the instrument are not. Because the
level of the hydro generation share decrease is mechanically larger in states with more hydro production, the year
indicators do not properly control for this in the fixed e�ects estimator.
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e�ects on fuel revenue share, where fuels equal total energy net of electricity. The e�ect should be
and is statistically larger than the e�ect on energy revenue share, because the latter includes an
increase in fuel input costs but a decrease in electricity purchases. Column 5 shows that shortages
do not statistically a�ect electric intensity, measured in kWh per Rupee of revenues. In reality,
there should be some small e�ect, consistent with the results from Fisher-Vanden, Mansur, and
Wang (2012) for Chinese manufacturers. Our standard errors rule out that a ten percent increase
in shortages causes more than a 0.0005 kWh/Rupee decrease in electric intensity. This is about
38 percent of the median, which is 0.013 kWh per Rupee. Although this could be economically
meaningful, it provides some statistical support for our model’s simplifying assumption that ⁄ is
exogenous.

7 Simulations

7.1 Overview

In this section, we calibrate the model in Section 3 to the distribution of plants and production
function parameters in the Annual Survey of Industries data. This parallels the empirical estimates
in that both are based on the ASI, but here we simulate shortage e�ects instead of estimating them.

First, we simulate e�ects of shortages holding fixed each plant’s observed generator adoption de-
cision from the ASI; we call these the exogenous generator simulations. We also present simulations
with endogenous generator adoption decisions, which can be thought of as simulating the long-run
e�ects of shortages. The endogenous generator simulations extend the empirical estimates from
the previous section, which primarily identify short-run e�ects because they are largely identified
o� of annual variation. We then study how shortages di�erentially a�ect small vs. large plants and
consider a counterfactual scenario using interruptible electricity contracts.

The simulations consider the population of plants that appear in the ASI in 2005. We report the
mean e�ect across plants, weighted by each plant’s sampling weight. This is di�erent than reporting
output-weighted e�ects, which might be informative about aggregate sectoral implications. We do
this to more closely match our empirical estimates, which are also not weighted by output. Output-
weighted e�ects on revenues, TFPR, and profits would be smaller, because the largest plants are
much more likely to own generators.

Shortage ” is the CEA estimate for each plant’s state in 2005; this averages 7.1 percent across
all plants.2122 Appendix Table A17 presents parameters used to calibrate the model. Production

21We chose 2005 because it is both recent and very close to average: over the 1992-2010 sample, the average
nationwide shortage ranged from 6.4 to 11.1 percent, and the mean reported in Table 1 is 7.2 percent.

22This assumes that all plants within a state are subject to the average outage rate. In reality, some plants or
industrial areas have preferential electricity access, while others are in areas with particularly poor supply, and this
within-state variation may be correlated with losses from outages. Unfortunately, this plant-specific variation is
not possible to quantify on a nationwide basis. We also assume that shortages only act through blackouts and not
through variations in quality such as lower voltage. Note that the empirical estimates in Section 6 do not require these
assumptions: the empirical estimates reflect the causal relationship between state average shortage and manufacturing
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function parameters are estimated as detailed in Section 3.5. For the relative cost of grid-purchased
vs. self-generated electricity (pE,G vs. pE,S), we use the World Bank Enterprise Survey medians.
Only the ratio of pE,S to pE,G matters; from Table 2, this is 7/4.5 ¥ 1.56.

7.1.1 Modeling the Generator Purchase Decision

We model the decision to purchase a generator as a binary choice: either a plant owns a generator
which is large enough to provide full backup during a power outage, or it does not own a generator.
Because the ASI does not include data on generator capacity, we first calculate a simple, back-
of-the-envelope estimate of each plant’s capacity requirement. To do this, we transform a plant’s
total electricity consumption Eit (in kilowatt-hours) into the capacity required to provide that
consumption assuming that plants use an equal flow of power for six hours per day, 365 days a
year. Under this assumption, the median plant, for example, would require a generator with about
500 kilowatts (KW) of capacity.

A plant will purchase a generator if its generator cost is less than its variable profit increase. The
variable profit increase is calculated by simulating variable profits with and without a generator, by
inserting optimized labor and materials inputs into Equation (4). Based on conversations with three
di�erent generator vendors in India, we assume an annualized cost of Rs 1374 per KW capacity.

7.2 Predictions

Table 11 presents e�ects of shortages on manufacturers’ revenue, TFPR, and profits. Columns 1 and
2 present simulated e�ects with exogenous and endogenous generators, respectively23. To facilitate
comparisons, the remainder of the columns restate results from earlier in the paper. Column 3 adds
predictions based on the ASI empirical estimates: the predicted e�ects of a 7.1 percent shortage
given the IV coe�cients in Table 8. Column 4 presents the p-value of a test that the exogenous
generator simulation results di�er from the IV coe�cient, with standard errors calculated using
the Delta method. Column 5 restates the textile case study results from Section 4, while Column
6 gives self-reported output losses from the World Bank Enterprise Survey discussed in Section 2.

7.2.1 Exogenous Generator Predictions

The predictions with exogenous generators in Column 1 of Table 11 show that the average plant
loses 4.6 percent of revenues due to a 7.1 percent electricity shortage. This revenue loss is very
di�erent for plants that have a generator versus those that do not. Plants with generators lose only
0.4 percent of revenues. The reason why this is so small is that there is no “shutdown e�ect,” i.e.

outcomes, but they do not assume that manufacturers face that same average shortage or that the average shortage
does not a�ect power quality.

23Since the model is not set up to exactly match each plant’s observed input choices of labor and materials, we
simulate both the shortage and no-shortage counterfactuals and present the di�erence. If we instead compared the
observed equilibrium to counterfactual simulations with no shortages, we would be capturing both the e�ects of
shortages and the model’s prediction error.
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no output is lost due to shutdown. Instead, all revenue losses come through the output tax e�ect:
the reduction in the marginal product of materials and labor due to higher-cost self-generated
electricity. The implicit output tax T during outage periods is 2.8 percent: the 55 percent increase
in electricity price when self-generating times the 5 percent revenue share of electricity. Given that
shortages occur 7.1 percent of the year, weighted average unit input cost across all periods would
rise by 2.8%◊7.1%¥0.2% if output were constant, and slightly less given that plants reduce output
during blackouts. The e�ect on revenue is small because this implicit tax is small.

By contrast, revenues fall by 9.6 percent for plants that do not have generators. This e�ect is
larger than the 7.1 percent of the time when the plant cannot operate due to shortages, because
the e�ect of shortages is amplified through the shutdown tax e�ect: expected power outages reduce
the expected marginal revenue product of the semi-flexible input (labor) by ”, causing firms to
reduce labor input. The large simulated e�ects for non-generators and small simulated e�ects
for self-generators are closely consistent with the di�erential IV estimates for generators and non-
generators reproduced in Column 3. This is also consistent with the small revenue losses for textile
plants with generators reproduced in Column 5.

Table 11 also shows the predicted e�ects of shortages on measured TFPR. As with revenue, the
TFPR losses are very di�erent for non-generators vs. self-generators: 3.4 percent vs. almost zero,
respectively. The average TFPR loss is 1.6 percent. For plants that have generators, the TFPR
loss is driven by the input variation e�ect: with a concave production function, it would have been
more e�cient to produce with a constant input bundle instead of di�erent input bundles during
outage vs. non-outage periods. Since plants that have generators do not reduce output very much
during outages given the small implicit output tax T , the input variation e�ect is quite small.

By contrast, the shutdown e�ect on TFPR - non-generators’ loss of non-storable inputs of labor
and capital during power outages - is much larger. If no inputs were fully flexible, then a 7.1 percent
shortage would translate directly into a 7.1 percent TFPR loss for non-generators. However, plants
that shut down during power outages can store materials. Given that the sum of labor and capital
shares averages 20 percent, the shutdown e�ect on TFPR is much less than the 7.1 percent of the
time that non-generators shut down due to outages.

7.2.2 Endogenous Generator Predictions

The large di�erence in losses between plants with vs. without generators begs the question of why
many plants choose not to purchase generators. Can the simulations rationalize decisions to not
purchase a generator?

The bottom part of Column 2 of Table 11 shows that 72 percent of plants are predicted to
purchase generators. This is higher than the 54 percent of plants that ever report producing
power and appear in the 2005 ASI, but substantially less than 100 percent. We can thus easily
rationalize the incomplete generator adoption observed in the ASI: even if there are large losses
from not purchasing generators, the capital cost is high enough that many plants do not adopt. The
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share of plants that purchase generators is not very sensitive to the assumed generator cost. For
example, at costs of 940 and 1500 Rupees per KW-year, respectively, 78 and 70 percent of plants
purchase generators; the elasticity of generator adoption with respect to generator cost is -0.14.
This inelasticity is due to a wide dispersion across plants of variable profit gains from generator
ownership, which is primarily driven by the wide revenue productivity dispersion observed in the
ASI, which is ubiquitous in producer-level datasets (Syverson 2011).

Column 2 in Table 11 shows that when generator adoption is endogenous, shortages are predicted
to reduce revenues by 0.8 percent, TFPR by 0.1 percent, and variable profits by 0.9 percent. The
variable profit losses do not include generator capital costs. This cost represents another 1.6 percent
of profits for plants with generators, for a total profit loss of 2.3 percent for plants with generators.
Taking the mean across the 72 percent of plants with generators and the 28 percent of plants without
generators, the total profit loss including generator capital costs is 72%◊2.3% + 28%◊1.6%¥2.1
percent.

The predicted losses in Column 2 are much smaller than with exogenous generator ownership
in Column 1, because the simulation in Column 2 allocates generators to plants with the highest
simulated gains. By contrast, the generator adoption choices observed in the data depend on
unobserved factors, so in Column 1 generators are not allocated to plants that are simulated to
benefit from them the most.

7.2.3 Predictions: Models versus Regressions

Because the empirical estimates are identified o� of annual variation in hydroelectric output, plants
are unlikely to respond by changing generator stock, so it is most appropriate to compare empirical
estimates to the exogenous generator simulations in Column 1. There is remarkable agreement
between the empirical estimates and simulation results, especially once we account for the role of
generators. Column 3 shows that the IV estimates predict that 7.1 percent average shortages reduce
average revenues by 4.8 percent, against a simulated value of 4.6 percent in Column 1. Both the IV
estimates and simulations predict that revenue losses for generators are very small and that revenue
losses for non-generators are larger than the 7.1 percent average shortage. Finally, both the IV and
simulations predict that TFPR losses are much smaller than revenue losses and that TFPR losses
are focused on non-generators. Column 4 shows that all estimates are statistically indistinguishable,
although one of the six is di�erent with only slightly less than 90 percent confidence.

The results of the textile case study and World Bank Enterprise Survey data are also qualita-
tively consistent. All textile plants in the Bloom et al. (2013) data have generators, and revenue
and TFPR losses from weekly power holidays are relatively small. The World Bank self-reported
revenue losses are close to the simulation result and not statistically di�erent from our IV estimates,
and non-generators report larger losses than self-generators. Interestingly, however, self-generators
still report 7.3 percent losses, which is larger than our empirical estimates or model can explain.
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This highlights the importance of using actual empirical estimates instead of self-reports.24

Overall, the close correspondence between our model and estimates using di�erent datasets and
identification strategies gives us confidence in the empirical estimates as well as our understanding
of the underlying mechanisms.

7.3 Robustness

How sensitive are the results to alternative assumptions? In the baseline estimates, we assume that
plants face a CES demand curve with demand elasticity ‘ = ≠10. This elasticity is important be-
cause it determines the markup (‘ = ≠10 implies a -1/‘=10 percent markup) and thus profitability.
It also determines how revenue responds to costs: when demand is more inelastic, a given change in
costs results in a smaller change in output. When we use an elasticity of ‘ = ≠4 in the exogenous
generator simulations, consistent with Bloom (2009) and Asker, Collard-Wexler, and De Loecker
(2014), revenues drop by 4.0 percent instead of 4.6 percent.25 When we assume that self-generated
electricity actually costs four times as much as grid electricity, or 18 Rupees/kWh instead of the
World Bank median of 7, revenue losses are 5.5 percent instead of 4.6 percent. Appendix Table
A18 presents the detailed results of these alternative simulations. While our assumptions on de-
mand elasticity and price of self-generated electricity are relatively di�cult to substantiate, our
qualitative conclusions do not hinge on these assumptions.

7.4 Predictions Under Varying Shortage Levels

Table 12 simulates the e�ects of shortages at levels ranging from 3 to 20 percent relative to zero
shortage. While this table is structured similarly to Table 11, the exact results are not comparable
because Table 12 assumes that all plants nationwide face the same shortage, instead of their state-
specific shortage from 2005. The top and bottom panels present simulations with exogenous and
endogenous generators, respectively.

With exogenous generator choices, average revenue losses increase linearly from 1.9 to 13 per-
cent as average shortages increase from 3 to 20 percent. By contrast, with endogenous generator
adoption, the average revenue loss rise non-linearly from 0.7 percent to 1.5 percent as shortages

24It could be that managers of plants with generators interpreted the question as to include capital costs of
generators. Such alternative interpretations of self-reported data are yet another reason why empirical estimates are
important.

25To get a sense of whether our simulations are reasonable, we can compare results to Davis, Grim, and Haltiwanger
(2008), who investigate the elasticity of revenue with respect to the price of electricity in the United States. Since a
power outage is equivalent to an increase in the price of electricity for plants with generators, we can compare the
elasticity of revenue with respect to electricity price in our model to the one estimated in Davis, Grim and Haltiwanger
(2008). We compute an elasticity of revenue with respect to the price of electricity of -0.2 when we assume ‘ = ≠10,
and -0.4 when we assume ‘ = ≠20, while Davis, Grim and Haltiwanger (2008) find an elasticity of -0.6. If anything,
our model thus under-predicts the response of revenue to shortages for generators, but not by a large amount. On the
other hand, the Davis, Grim, and Haltiwanger (2008) estimate is quite large, and it is somewhat di�cult to explain
given how small electricity is as a share to total costs.
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increase from 3 to 20 percent. With endogenous generators, the average revenue loss reflects the
combination of two forces. First, revenue losses increase as shortages worsen for both generators
and non-generators. Second, however, more plants adopt generators as shortages worsen, and rev-
enue losses are smaller for plants with generators. This decreases the weighted average revenue
loss.

Variable profit losses scale very closely with revenue losses in percentage terms. The second-to-
bottom row in each panel presents generator capacity costs as a percent of profits. With exogenous
generator choices, this is constant at 2.5 percent of profits. With endogenous choices, this increases
monotonically in the shortage as takeup rate increases. Total profit losses are the sum of variable
profit losses and generator capacity costs.

7.5 Impact of Shortages by Plant Size

How do electricity shortages a�ect di�erent types of plants? Hsieh and Klenow (2012) propose
that electricity shortages combined with di�erential access to grid electricity could be an impor-
tant factor benefiting large plants. We focus on a di�erent mechanism for di�erential impacts by
plant size: economies of scale in self-generation. On a broader level, these economies of scale are
important, and they explain why electricity is usually generated by a few centralized power plants.
For manufacturers, capacity is much cheaper for larger plants: typical generator prices drop by 30
to 45 percent as capacity increases from 60 to 1,000 KW.

Figure 8 presents the non-parametric relationship between plant size and predicted variable
profit losses in the exogenous generator simulation with 7.1 percent average shortages, which is the
same setup as Column 1 of Table 11. Plants with 10 workers face an average profit loss of seven
percent, while plants with 1000 workers su�er a two percent average profit loss. These di�erences
are driven almost entirely by the empirical distribution of generator ownership: 23 percent of small
plants in 2005 have generators, while 55 percent of large plants have them. Appendix Table A19
presents additional simulation results for large vs. small plants, as well as more vs. less electric
intensive plants.

7.6 Counterfactual: E�ects of Shortages with Interruptible Contracts

Given that 54 percent of manufacturing plants use generators, this “distributed generation” pro-
vides production capacity that would optimally be exploited during times of scarcity. Currently,
there are plants that have generators but don’t use them because they receive grid power, while
other nearby plants without generators simultaneously experience outages. Interruptible electricity
contracts o�er consumers a rebate for accepting outages during times of scarcity. If distribution
companies o�er both uninterruptable and interruptible contracts and allow consumers to sort into
their preferred contract, this provides a mechanism to allocate outages to plants that are least
a�ected.
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We simulate the e�ects of allowing plants to select into one of two contracts, one which will
never experience outages, and one which will experience outages 14.2 percent of the time - twice
the national average outage rate. The market-clearing rebate for the interruptible contract is
pinned down by the maximum profit loss of the plants that comprise 50 percent of grid electricity
consumption. When this 50 percent of consumption is interrupted 14.2 percent of the time, this
allows the uninterruptible contracts to be fulfilled. Because larger plants have generators and are
thus willing to accept interruptible contracts at lower rebates, only 8.9 percent of plants need to
opt into the interruptible contract to clear the market. Under this counterfactual policy, revenue,
TFPR, and variable profit losses average only 0.15, 0.04, and 0.20 percent, respectively. These
losses are much smaller than the 4.6, 1.6, and 6.8 percent reported in Column 1 of Table 11.

8 Conclusion

India’s lack of reliable electricity supply provides a stark example of how poor infrastructure a�ects
economic growth. We study the e�ects of shortages on manufacturing using archival data on
shortages, previously-unavailable panel data from the Annual Survey of Industries, and a new
instrument for shortages based on variation in hydro reservoir inflows. We augment this with a
detailed case study of how textile plants in Bloom et al. (2013) respond to planned power holidays.
We use a hybrid Leontief/Cobb-Douglas production function model to clarify the di�erent ways in
which input shortages a�ect firms and use simulations to confirm empirical results and extend to
the “long-run” case with endogenous generator adoption.

There are three main conclusions. First, electricity shortages are a large drag on Indian man-
ufacturing, on the order of five percent of revenue. Second, however, electricity shortages a�ect
productivity much less than revenue, and shortages alone certainly do not explain much of the
productivity gap between firms in developing vs. developed countries. Third, shortages have het-
erogeneous e�ects across plants with vs. without generators and with high vs. low electric intensity.
Relatedly, because of economies of scale in self-generation, small plants are less likely to own gen-
erators, meaning that shortages have much stronger negative e�ects on small plants. This adds
another distortion to the firm size distribution in developing countries, related to the discussion of
Hsieh and Olken (2014), Tybout (2000), and others.

Even if it is infeasible to su�ciently increase generation capacity or to raise electricity prices
during periods of scarcity, our analysis suggests that two policy changes could reduce losses from
shortages. First, our textile case study illustrates how advance knowledge of outages through
planned power holidays can mitigate TFP losses by making additional inputs storable. Second,
mechanisms such as interruptible contracts allow plants that have lower costs of outages to reveal
this to the distribution company. This allows shortages to be “targeted” at firms that can more
easily accommodate them.
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Tables

Table 1: State-Level Data Summary Statistics
Variable Mean Std. Dev. Min. Max. N

Assessed Demand (TWh) 20.01 22.74 0 128.3 509
Quantity Supplied (TWh) 18.27 20.17 0 107.02 509
Shortage 0.07 0.07 0 0.36 507
Peak Shortage 0.11 0.1 0 0.5 507
Reservoir Inflows (Billion Cubic Meters) 5.19 13.73 0 115.98 570
Hydro Generation (TWh) 2.46 3.1 0 15.27 570
Total Electricity Sold (TWh) 12.86 15.14 0.05 87.53 543
Average Cooling Degrees (F), Base 65 12.32 3.3 2 18.94 543
Annual Rainfall (meters) 1.36 0.63 0.27 5.01 551

Notes: This table presents descriptive statistics for data that vary at the state-by-year level. The first
six variables are from the Central Electricity Authority, while the temperature and rainfall data are from
the National Climate Centre. Cooling degrees for day ·=max(0,Average Temperature· (F)-65).

Table 2: Power Cuts and Plant Size in the 2005 World Bank Enterprise Survey

Small Large
Plant Descriptions Plants Plants
Number of Plants Surveyed 1719 306
Number of Workers (Mean) 23 494
Gross sales, in million Rupees (Median) 5.7 172

Electricity Shortage Questions
How [many times in 2005] did your establishment
experience power outages or surges? (Mean) 132 99
Does your establishment own or share a generator? (Percent) 46 83
What percent of your electricity comes from the generator? (Mean) 10 17
What is the average cost [in Rs/kWh] for generator electricity? (Median) 7 7
What is the average cost [in Rs/kWh] for public grid electricity? (Median) 4.5 4.5
What were your percentage losses from power outages or surges? (Mean) 8.0 4.9
Electricity is the "biggest obstacle for operation/growth" (Percent) 34 26

Notes: “Small Plants” have less than 100 workers, while “Large Plants” have 100 or more workers.
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Table 3: Textile Output on Power Holidays

Dependent Variable: Output (1) (2) (3) (4)

1(Power Holiday) -0.097 -0.074 -0.006 0.025
(0.025)*** (0.017)*** (0.022) (0.027)

1(Power Holiday) x Shortage -0.006 -0.006
(0.003)** (0.003)**

Shortage 0.001 0.001
(0.004) (0.004)

Number of Obs. 26,114 26,114 26,114 26,114
Number of Clusters 22 22 22 22
Day-of-Sample Controls No Yes Yes Yes
Power Holiday x Month Controls No No No Yes

Notes: This table presents estimates of Equation (19). The dependent variable is ÂQi· , plant i’s
production on day · , normalized by plant i’s average daily production. Robust standard errors,
clustered by plant. *,**, ***: Statistically di�erent from zero with 90, 95, and 99 percent confidence,
respectively.

Table 4: Textile Monthly Energy Cost Regressions

Dependent Variable: Energy Cost (1) (2) (3) (4)

Power Holiday Output Share 0.610 0.791 0.821 0.811
(0.362) (0.314)** (0.335)** (0.343)**

Normalized Output 0.237 0.232
(0.167) (0.167)

Shortage -0.003
(0.005)

N 307 307 307 307
Month-by-Year Controls No Yes Yes Yes

Notes: This table presents estimates of Equation (20). The dependent variable for columns 1-5 is
ÂFim, plant i’s total energy cost in month m, normalized by plant i’s average monthly energy cost.
Robust standard errors, clustered by plant. *,**, ***: Statistically di�erent from zero with 90, 95,
and 99 percent confidence, respectively.
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Table 5: Losses on Planned Power Holidays

Input Cost E�ect
Mean share of output on power holidays (G) 0.11
Increase in energy costs when self-generating (‚÷1) 0.81
Median energy revenue share 0.026
Input cost increase (share of revenues) 0.0024

Output Loss
Share of days that are power holidays 1/7
Output loss on power holidays (‚fl) 0.074
Share of output lost 0.011

Shutdown E�ect on Measured TFP
Share of fixed inputs (capital) (—K) 0.05
ln(TFP) change: —K ln(1 ≠ Outputloss) -0.00053

Notes: This table presents estimates of textile plants’ losses on planned power holidays, using
empirical estimates from Tables 3 and 4.
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Table 6: Annual Survey of Industries Summary Statistics
Variable Mean Std. Dev. Min. Max. N

Revenues (million Rupees) 323 3698 0 788,867 614,347
Capital Stock (million Rupees) 127 1751 0 297,370 612,832
Total Persons Engaged 164 717 0 52,148 577,295
Materials Purchased (million Rupees) 210 2712 0 636,137 607,536
Fuels Purchased (million Rupees) 13.3 177 0 39,360 560,131
Electricity Purchased (million Rupees) 8.69 82.9 0 9935 561,464
Electricity Consumed (GWh) 3.4 51.8 0 7357 596,407
Electricity Purchased (GWh) 2.17 33.0 0 6545 599,717
Electricity Self-Generated (GWh) 1.23 35.0 0 7147 598,619
1(Self-Generator) 0.54 0.5 0 1 616,129
Electric Intensity (kWh/Rs) 0.01 0.02 0 0.39 599,116
Self-Generation Share 0.08 0.19 0 1 592,914
Energy Revenue Share 0.11 0.16 0 3.23 597,437
1(Census Scheme) 0.41 0.49 0 1 616,129
Plant Number of Observations 5.86 4.97 1 19 616,129

Notes: Rupees are constant 2004 Rupees. 1(Census Scheme) takes value 1 for plants with more than
100 workers which are surveyed each year, and value 0 for Sample Scheme for smaller plants in the rotating
panel. Excludes observations flagged as “within-plant outliers” using the procedure described in Appendix
A.
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Table 7: Assessing the Hydro Instrument

(1) (2) (3) (4) (5)
ln(Quantity ln(Assessed

Outcome Variable: Shortage Shortage ln(Agri Output) Supplied) Demand)

� Hydro -0.048 -0.046 0.149 0.063 0.014
(0.017)*** (0.025)* (0.117) (0.032)** (0.026)

� ln(Rainfall) -0.009 0.156
(0.009) (0.059)**

� Cooling Degrees -0.002 -0.027
(0.003) (0.020)

R2 0.14 0.15 0.27 0.17 0.22
N 469 454 398 469 469

Robust standard errors. *,**, ***: Statistically di�erent from zero with 90, 95, and 99 percent
confidence, respectively.
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Table 8: Base Specifications
Panel A: Di�erence Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.227 -0.037 0.022 0.091
(0.023)*** (0.055) (0.040) (0.029)***

Number of Obs. 172,396 220,701 374,283 366,446
Number of Clusters 2,781 2,936 3,262 3,261

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.571 0.633 -0.680 0.034
(0.106)*** (0.230)*** (0.327)** (0.141)

Number of Obs. 172,396 220,701 374,283 366,446
Number of Clusters 2,781 2,936 3,262 3,261

Notes: This table presents estimates of Equation (22). Panel B instruments for Shortage using the
hydroelectric generation instrument. Robust standard errors, clustered by state-by-year di�erence.
*,**, ***: Statistically di�erent from zero with 90, 95, and 99 percent confidence, respectively.
Samples for columns 1 and 2 are limited to plants that ever self-generate electricity.
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Table 9: Instrumental Variables Estimates with Moderators

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage -0.029 1.165 -1.918 0.258
(0.038) (0.818) (0.959)** (0.373)

� Shortage x Elec Intensive 0.069 0.884 -1.549 -0.335
(0.079) (0.456)* (0.502)*** (0.303)

� Shortage x Self-Generator 0.572 -0.907 2.356 -0.078
(0.107)*** (0.794) (0.980)** (0.382)

Number of Obs. 301,490 343,804 374,283 366,446
Number of Clusters 3,187 3,213 3,262 3,261

Notes: This table presents estimates of Equation (22), instrumenting for Shortage using the hydro-
electric generation instrument. Electric Intensive is an indicator variable for being in an industry
with above median electricity use per unit revenues. Regressions also include lower-order interac-
tions of Electric Intensive and Self-Generator with year di�erence indicators ◊iy and state indicators
Âs. Robust standard errors, clustered by state-by-year di�erence. *,**, ***: Statistically di�erent
from zero with 90, 95, and 99 percent confidence, respectively.

Table 10: Instrumental Variables Estimates for Additional Outcomes

(1) (2) (3) (4) (5)
ln(Materials/ ln(Fuel Electric

Outcome Variable: ln(Labor) ln(Materials) Labor) Rev Share) Intensity

� Shortage -0.173 -0.828 -0.715 1.736 0.005
(0.218) (0.324)** (0.257)*** (0.467)*** (0.006)

Number of Obs. 375,220 367,602 366,935 212,627 356,805
Number of Clusters 3,272 3,253 3,253 2,677 3,230

Notes: This table presents estimates of Equation (22) for additional outcomes, instrumenting for
Shortage using the hydroelectric generation instrument. Electric Intensity for plant i in year t is
the ratio of kWh of electricity consumed to revenues. Robust standard errors, clustered by state-by-
year di�erence. *,**, ***: Statistically di�erent from zero with 90, 95, and 99 percent confidence,
respectively. Samples for columns 1 and 2 are limited to plants that ever self-generate electricity.
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Table 11: Simulation versus Estimates

(1) (2) (3) (4) (5) (6)
Simulation: Simulation: IV P-Value for Textiles World
Exogenous Endogenous Estimate Columns Bank
Generator Generator (1) vs. (3) Survey

Revenue Loss
All 4.6% 0.8% 4.8% (0.81) 7.8%
Generators 0.4% 0.5% -1.7% (0.28) 1.1% 7.3%
Non-Generators 9.6% 1.6% 20.0% (0.15) 8.4%

TFPR Loss
All 1.6% 0.1% 0.2% (0.22)
Generators 0.1% 0.0% 0.1% (0.97) 0.05%
Non-Generators 3.4% 0.4% -1.0% (0.10)

Input Cost Increase
Generators 0.5% 0.6% 0.13 to 0.5% 0.24%

Variable Profit Loss
All 6.8% 0.9%
Generators 0.6% 0.7%
Non-Generators 11.5% 1.6%

Generator Takeup Rate 54%* 72% 100%* 52%*

Notes: “Simulation” refers to the predictions of the model using the 2005 ASI and described in text.
The simulations with “exogenous” generators hold fixed the generator adoption decision observed
in the ASI, while the simulations with “endogenous” generators use the model’s prediction of which
plants will purchase generators at the di�erent shortage levels. TFPR is defined as the residual of
the revenue generating production function using the approach described in Section 3. Input Cost
Increase is reported as a share of revenues. The share of plants predicted to purchase a generator
assumes an annualized cost of 1374 Rupees per KW-year. * indicates that the generator takeup
rate is data, not a prediction. “IV Estimate” refers to the estimates in Table 8 and Appendix Table
A15, extrapolated under a 7.1 percent shortage. “P-Value” is the p-value for the test of whether
the model’s prediction with exogenous generators is equal to the IV estimate. “Textiles” refers to
estimates in Table 5. “World Bank Survey” refers to self-reported data from the 2005 World Bank
Enterprise Survey.
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Table 12: Counterfactuals Under Varying Shortage Levels

(1) (2) (3) (4) (5)
Shortage Percent (”): 3% 5% 7% 10% 20%
Exogenous Generators
Revenue Loss: Average 1.9% 3.2% 4.5% 6.4% 13%
Revenue Loss: Generators 0.2% 0.4% 0.5% 0.8% 1.5%
Revenue Loss: Non-Generators 4.0% 6.7% 9.4% 13% 25%

TFPR Loss: Average 0.6% 1.0% 1.5% 2.1% 4.4%

Input Cost Increase: Generators 0.2% 0.4% 0.5% 0.8% 1.5%

Variable Profit Loss: Average 2.0% 3.5% 5.0% 7.4% 17%
Generator Cost (Percent of Profits) 2.5% 2.5% 2.5% 2.5% 2.5%
Total Profit Loss: Average 4.5% 6.0% 7.5% 9.9% 20%

Endogenous Generators
Generator Takeup 85% 90% 94% 96% 100%

Revenue Loss: Average 0.7% 0.9% 0.9% 1.0% 1.5%
Revenue Loss: Generators 0.1% 0.2% 0.4% 0.6% 1.4%
Revenue Loss: Non-Generators 4.0% 6.4% 8.7% 12% 23%

TFPR Loss: Average 0.10% 0.11% 0.08% 0.08% 0.05%

Input Cost Increase: Generators 0.2% 0.3% 0.4% 0.7% 1.5%

Variable Profit Loss: Average 0.7% 0.9% 1.0% 1.2% 1.8%
Generator Cost (Percent of Profits) 1.4% 1.6% 1.8% 2.0% 2.4%
Total Profit Loss: Average 2.1% 2.5% 2.8% 3.2% 4.2%

Notes: This table presents predictions of the simulation model described in the text. The simula-
tions with “exogenous” generators hold fixed the generator adoption decision observed in the ASI,
while the simulations with “endogenous” generators use the model’s prediction of which plants will
purchase generators at the di�erent shortage levels. Input Cost Increase is reported as a share
of revenues. In this table, the electricity shortage is uniform across all plants in all states. The
share of plants predicted to purchase a generator assumes an annualized cost of 1374 Rupees per
KW-year.
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Figures

Figure 1: Average Shortages and Per Capita GDP by State
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Notes: This figure compares the average of shortages estimated by the Central Electricity Authority
to the 2010 per capita GDP, for all states and Union Territories.

Figure 2: Variation in Shortages Over Time
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Notes: This figure presents shortages over the study period for five large states, as estimated by
the Central Electricity Authority.
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Figure 3: Manufacturing Electricity Generation in India vs. the U.S.
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Notes: This figure presents the ratio of electricity generation to consumption by three-digit industry.
Indian and U.S. data are from the Annual Survey of Industries and the Manufacturing Energy
Consumption Survey, respectively.

Figure 4: Generator Ownership and Plant Size
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Notes: This figure presents local mean-smoothed estimates of the share of plants in all years of
the Annual Survey of Industries sample that ever report self-generation, as a function of number
of employees.
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Figure 5: Output on Power Holidays and Non-Holidays
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Notes: This figure presents the distribution of production by day of week for an example plant,
using an Epanechnikov kernel with bandwidth 250. For this plant, every Friday is a power holiday.

Figure 6: Hydro Share of Electricity by State
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Notes: This figure presents the each state’s mean ratio of hydroelectricity production to total
consumption over 1992-2010. The graph includes only larger states with GDP larger than one
billion Rupees in the year 2004 and with non-zero manufacturing production.
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Figure 7: First Stage in Karnataka
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Notes: This figure presents shortages and the hydro instrument over the study period in the state
of Karnataka.

Figure 8: Plant Size and Predicted Profit Losses from Power Outages
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A Appendix: Annual Survey of Industries Data Preparation
We extract a subset of variables from the raw data separately for each year and then stack all years of
data together.26 We correct accounts in 1993-94 to 1997-98 whose values have been supplied in “pre-
multiplied” format from the Central Statistical Organisation’s Ministry of Statistics and Planning Imple-
mentation (CSO/MOSPI). We then merge in state names based on the coding schemes provided with the
Annual Survey of Industries (ASI) documentation, and we create a separate consistently-defined state vari-
able which takes into account the creation of Jharkhand, Chhattisgarh and Uttaranchal (now Uttarakhand)
in 2001 from Bihar, Madhya Pradesh and Uttar Pradesh, respectively.

India classifies manufacturing establishments with its National Industrial Classification (NIC), which re-
semble industrial classifications commonly used in other countries. The classifications were revised in 1987,
1998, 2004, and 2008. We convert all industry classifications to the NIC-1987 scheme using concordances
provided by MOSPI with our data purchases. All financial amounts are deflated to constant 2004-05 Rupees.
Revenue (gross sales) is deflated by a three-digit commodity price deflators as available in the commodity-
based table “Index Numbers Of Wholesale Prices In India – By Groups And Sub-Groups (Yearly Averages)”
produced by the GOI O�ce of the Economic Adviser-Ministry of Commerce & Industry27. Each three-digit
NIC-1987 code is assigned to a commodity listed in this table. The corresponding commodity deflator is
used to deflate revenues. To deflate material inputs, we construct the average output deflator of a given
industry’s supplier industries based on India’s 1993-94 input-output table, available from the Central Sta-
tistical Organization. Fuels and total energy costs (fuels plus electricity) are deflated by the price index for
“Fuel, Power, Light, and Lubricants.” Capital is deflated by an implied national deflator calculated from
“Table 13: Sector-wise Gross Capital Formation” from the Reserve Bank of India’s Handbook of Statistics
on the Indian Economy.28 Electricity costs are deflated using a national GDP deflator.

The ASI data have at least two well-known shortcomings. First, while the data are representative of
small registered factories and a 100 percent sample of large registered factories, not all factories are actually
registered under the Factories Act. Nagaraj (2002) shows that only 48 percent and 43 percent of the number
of manufacturing establishments in the 1980 and 1990 economic censes appear in the ASI data for those years.
Although it is not clear how our results might di�er for unregistered plants, the plants that are observed in
the ASI are still a significant share of plants in India. Second, value added may be under-reported, perhaps
associated with tax evasion, by using accounting loopholes to overstate input costs or under-state revenues
(Nagaraj 2002). As long as changes in this under-reporting are not correlated with electricity shortages, this
will not a�ect our results.

A.1 Determination of Base Sample
Appendix Table A21 details how the sample in Table 6 is determined from the original set of observations
in the ASI. The 1992-2010 ASI dataset begins with 949,992 plant-year observations. Plants may still appear
in the data even if they are closed or did not provide a survey response. We drop 172,697 of these plants
reported as closed or non-responsive. We drop a trivial number of observations missing state identifiers
and observations in Sikkim, which has only been included in the ASI sampling frame in the most recent
years. We drop 45,664 observations reporting non-manufacturing NIC codes. We remove a small number of
observations (primarily in the early years of our sample) which are exact duplicates in all fields, assuming
these are erroneous multiple entries made from the same questionnaire form. Since we are concerned largely
with revenue and productivity, we remove the 102,036 observations with missing revenues. We also drop the
9,095 observations with two or more input revenue share flags.

With this intermediate sample, we use median regression to estimate revenue productivity (TFPR)
under a full Cobb-Douglas model in capital, labor, materials, and energy. This full Cobb-Douglas revenue

26We thank Jagadeesh Sivadasan for helpful discussions and for providing Stata code that facilitated the
read-in of 1992-1997 ASI data. We thank Olivier Dupriez for similarly helpful discussions and pointing us
to read-in programs for ASI data from 1998 to 2007 available at the International Household Survey Network
(http://catalog.ihsn.org/index.php/catalog/central).

27Available from http://www.eaindustry.nic.in/
28Available from http://www.rbi.org.in
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productivity term is used only for the final sample restriction, which is to drop 464 plant-years which have
log-TFPR greater than 3.5 in absolute value from the sample median. Such outlying TFPR values strongly
suggest misreported inputs or revenues. The final sample is comprised of 616,129 plant-years, of which
362,439 are from the sample scheme and 253,690 are from the census scheme.

A.2 Variable-Specific Sample Restrictions
After the final sample is determined, there may still be observations which have correct data for most
variables but misreported data for some individual variable. When analyzing specific variables (such as self-
generation share, energy revenue share, or output in Table 8), we therefore additionally restrict the sample
using the following criteria:

• We generate “input revenue share flags” for labor and materials if input cost is more than two times
revenues, and we generate input revenue share flags for electricity and fuels if input cost is greater than
revenues.29 Because we also observe physical quantities for labor and electricity, we generate analogous
input revenue share flags by multiplying physical quantities by prices, resulting in an implied revenue
share based on these physical quantities. For electricity, we use the median real price (in Rs/kWh)
of purchased electricity in any given state and year. For labor, we assume a very conservative 1,000
Rs per person per annum wage rate. When using either of these inputs as an outcome, we omit
observations with an input revenue share flag for that input.

• There are a trivial number of observations which report unrealistic count of persons engaged (greater
than 200,000), which we make missing in those cases.

• We generate “within-plant outlier” flags for observations with unrealistically large year-to-year fluc-
tuations in revenue, TFPR, or any input. We flag observations if the change in logged value is more
than 3.5 (or 1.5 in a robustness check) from both adjacent observations. For a plants’ first or last year,
it is flagged if the change is more than 3.5 (or 1.5) from the plant’s one adjacent observation.

A.2.1 Cleaning Electricity Variables
We clean electricity variables in the following ways:

• We make electricity consumption missing for all observations that report zero electricity consumption
(other than brick kilns).

• We make all electricity variables missing if the plant reports consuming more than 110 percent or less
than 90 percent of the total amount of electricity they report purchasing and generating.

• We make missing the values of electricity purchased and sold if the implied price per kilowatt-hour is
less than 2 percent or more than 5000 percent of the median grid electricity price calculated across
plants in the same state and year. We also make missing the reported quantities of electricity purchased
and sold if the respective price flag is triggered.

A.2.2 Production Function and Productivity Estimation
We recover production function coe�cients given by Equations (9), (10), and (11) for each of the 143 three-
digit industries in the dataset. (To ensure su�cient sample size in each three-digit industry, we adjust
industry definitions slightly to ensure each three-digit industry has at least 100 plant-year observations.)
We use separate median regression for each two-digit industry, allowing for a linear time trend and separate
intercepts for each underlying three-digit industry. Consistent with the description in Section 3, the esti-
mation sample includes only census scheme plant-year observations that report zero electricity generation.
After calculating production function coe�cients, we compute TFPR from Equation (12).

29The flags would be slightly di�erent if applied to deflated inputs and revenues, but this will have minimal
implications for the results.
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We use several alternative methods for calculating production function coe�cients and TFPR for ro-
bustness checks:

• To check if our results are sensitive to assumptions about elasticity of demand, we calculate revenue
productivity terms for ‘ = ≠4 and ‘ = ≠Œ.

• We calculate an alternative materials term that adds the estimated cost of fuels not used for electricity
generation. (To avoid relying on this estimated cost, our usual materials term does not include any
fuels, so these costs do not enter the production function.)

• Omitting the linear time trend when estimating production coe�cients, which amounts to taking the
unconditional median by industry of the revenue shares for materials, labor, and electricity.

• Because in some industries plants with no self-generation may be unusual, we estimate production
functions and revenue productivity using all plants, i.e. including those that self-generate.
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B Appendix: Additional Tables
B.1 Supporting Tables for Textile Case Study

Table A1: Power Holidays

Number
of Plants State Scheduled Power Holidays
1 Gujarat Saturday before Sept 26, 2008; Sunday between Sept 26, 2008

and July 10, 2009; Monday after July 10, 2009
1 Dadra and Nagar Haveli Sunday
1 Gujarat Saturday before July 10, 2009; Sunday after July 10, 2009
1 Maharashtra Tuesday
1 Maharashtra None
3 Gujarat Saturday before July 10, 2009; Monday after July 10, 2009
14 Maharashtra Friday

Notes: This table lists the scheduled power holidays for the textile case study in Section 4

Table A2: Textile Summary Statistics
Variable Mean Std. Dev. Min. Max. N

Daily Data
Production (1000s of Picks) 442 1455 0 9098 26,114
Percent Grade A 55.3 28.5 0 100 12,489
Quality Defect Index 4.02 5.0 0.13 56.6 13,223
1(Power Holiday) 0.14 0.34 0 1 46,288

Monthly Data
Energy Costs (Rs 1000s) 300 282 8.88 1466 307
Labor (1000s of Hours) 32.3 20.7 4.39 148 575
Power Holiday Output Share 0.11 0.05 0 0.33 902
Diesel Price (Rs/liter) 35 1.67 31.4 38.3 902
Shortage 14.46 7.5 0 25.7 902

Notes: This table presents summary statistics for the textile case study in section 4. The top panel
includes the variables observed for each day. There are two measures of quality: the percent of fabric graded
quality level A, and the Quality Defect Index, a severity-weighted measure of the number of defects per
meter of fabric. The bottom panel includes variables observed for each month. “Shortage” is the Central
Electricity Authority’s monthly estimated electricity shortage percentage for the state where the plant is
located. Diesel prices are the Mumbai prices recorded by the website mypetrolprice.com. All rupees are
deflated to constant 2004-2005 values using the textile wholesale price index.

55



Online Appendix: Not For Publication Allcott, Collard-Wexler and O’Connell

B.2 First Stages

Table A3: First Stages for Base IV Estimates

(1) (2) (3) (4)
Self-Gen ln(Fuel

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFP)

� Hydro -0.134 -0.139 -0.100 -0.101
(0.020)*** (0.019)*** (0.016)*** (0.016)***

Number of Obs. 172,317 220,613 374,158 366,302
Number of Clusters 2,781 2,936 3,262 3,261
A-P F-Stat 43.98 52.51 39.36 39.6

Notes: This table presents the first stage estimates for the IV regressions in Panel B of Table 8.
Samples for columns 1 and 2 are limited to plants that ever self-generate electricity. F-statistic is for
the heteroskedasticity and cluster-robust Angrist-Pischke weak instruments test. Robust standard
errors, clustered by state-by-year di�erence. *,**, ***: Statistically di�erent from zero with 90, 95,
and 99 percent confidence, respectively.
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Table A4: Additional First Stages for Self-Generation Share

(1) (2) (3) (4) (5) (6)
� Shortage � Shortage

Outcome Variable: � Shortage � Shortage � Shortage � Shortage x Elec Int x Self-Gen

� Hydro -0.134 -0.110 -0.130 -0.062 0.018 -0.003
(0.038)*** (0.027)*** (0.021)*** (0.016)*** (0.004)*** (0.002)*

� Rainfall -0.007
(0.005)

� Cooling Degrees 0.000
(0.002)

� Hydro x Elec Intensive 0.009 -0.088 0.006
(0.005)* (0.015)*** (0.003)**

� Hydro x Self-Generator -0.076 -0.036 -0.133
(0.016)*** (0.008)*** (0.020)***

Number of Obs. 172,317 124,771 170,356 301,386 320,545 320,545
Number of Clusters 30 491 2,719 3,187 3,229 3,229
A-P F-Stat 12.51 16.1 40.28 43.95 32.44 43.95

Notes: This table presents the first stage estimates for alternative specifications with potentially
weakest first stage identification, using the sample with self-generation share as the outcome vari-
able. Column 1 clusters by state instead of state-by-year di�erence. All other columns cluster by
state-by-year di�erence. Column 2 includes one-year di�erences only. Column 3 controls for rainfall
and cooling degrees. Columns 4-6 are the three first stages for Table 9. Samples for columns 1, 2,
and 3 are limited to plants that ever self-generate electricity. F-statistic is for the heteroskedastic-
ity and cluster-robust Angrist-Pischke weak instruments test. Robust standard errors. *,**, ***:
Statistically di�erent from zero with 90, 95, and 99 percent confidence, respectively.
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Table A5: Additional First Stages for ln(Revenue)

(1) (2) (3) (4) (5) (6)
� Shortage � Shortage

Outcome Variable: � Shortage � Shortage � Shortage � Shortage x Elec Int x Self-Gen

� Hydro -0.100 -0.091 -0.098 -0.064 0.021 -0.003
(0.036)** (0.023)*** (0.016)*** (0.015)*** (0.005)*** (0.002)**

� Rainfall -0.002
(0.005)

� Cooling Degrees 0.001
(0.002)

� Hydro x Elec Intensive 0.010 -0.095 0.008
(0.005)** (0.016)*** (0.003)**

� Hydro x Self-Generator -0.077 -0.037 -0.136
(0.015)*** (0.008)*** (0.019)***

Number of Obs. 374,158 229,177 370,168 374,158 374,158 374,158
Number of Clusters 30 494 3,179 3,262 3,262 3,262
A-P F-Stat 7.52 15.52 36.5 51.21 37.63 51.21

Notes: This table presents the first stage estimates for alternative specifications with potentially
weakest first stage identification, using the sample with ln(Revenue) as the outcome variable. Col-
umn 1 clusters by state instead of state-by-year di�erence. All other columns cluster by state-by-
year di�erence. Column 2 includes one-year di�erences only. Column 3 controls for rainfall and
cooling degrees. Columns 4-6 are the three first stages for Table 9. Samples for columns 1, 2,
and 3 are limited to plants that ever self-generate electricity. F-statistic is for the heteroskedastic-
ity and cluster-robust Angrist-Pischke weak instruments test. Robust standard errors. *,**, ***:
Statistically di�erent from zero with 90, 95, and 99 percent confidence, respectively.
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B.3 Robustness Checks for Table 8

Table A6: Robustness Check: Weighting by ASI Sample Weights
Panel A: Di�erence Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.228 -0.083 0.039 0.083
(0.022)*** (0.065) (0.052) (0.032)***

Number of Obs. 172,396 220,701 374,283 366,446
Number of Clusters 2,781 2,936 3,262 3,261

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.555 1.041 -1.249 0.258
(0.099)*** (0.293)*** (0.410)*** (0.203)

Number of Obs. 172,396 220,701 374,283 366,446
Number of Clusters 2,781 2,936 3,262 3,261

Notes: This table presents estimates of Equation (22), weighting by ASI sample weights. Panel
B instruments for Shortage using the hydroelectric generation instrument. Samples for columns
1 and 2 are limited to plants that ever self-generate electricity. Robust standard errors, clustered
by state-by-year di�erence. *,**, ***: Statistically di�erent from zero with 90, 95, and 99 percent
confidence, respectively.
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Table A7: Robustness Check: Omitting Industry-by-Year Controls
Panel A: Di�erence Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.229 -0.016 0.037 0.080
(0.024)*** (0.059) (0.041) (0.035)**

Number of Obs. 172,396 220,701 374,283 366,446
Number of Clusters 2,781 2,936 3,262 3,261

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.581 0.773 -0.813 -0.111
(0.109)*** (0.248)*** (0.345)** (0.158)

Number of Obs. 172,396 220,701 374,283 366,446
Number of Clusters 2,781 2,936 3,262 3,261

Notes: This table presents estimates of Equation (22), omitting the industry-by-year controls µjt.
Panel B instruments for Shortage using the hydroelectric generation instrument. Samples for
columns 1 and 2 are limited to plants that ever self-generate electricity. Robust standard errors,
clustered by state-by-year di�erence. *,**, ***: Statistically di�erent from zero with 90, 95, and
99 percent confidence, respectively.
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Table A8: Robustness Check: Stricter Tolerance for Eliminating Within-Plant Outliers
Panel A: Di�erence Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.201 -0.036 0.007 0.130
(0.022)*** (0.054) (0.036) (0.025)***

Number of Obs. 153,830 197,188 362,359 359,800
Number of Clusters 2,726 2,860 3,236 3,249

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.530 0.613 -0.497 0.050
(0.097)*** (0.216)*** (0.279)* (0.126)

Number of Obs. 153,830 197,188 362,359 359,800
Number of Clusters 2,726 2,860 3,236 3,249

Notes: This table presents estimates of Equation (22), using a within-plant outlier tolerance of 1.5
natural logs instead of 3.5. Panel B instruments for Shortage using the hydroelectric generation
instrument. Robust standard errors, clustered by state-by-year di�erence. Samples for columns 1
and 2 are limited to plants that ever self-generate electricity. *,**, ***: Statistically di�erent from
zero with 90, 95, and 99 percent confidence, respectively.
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Table A9: Robustness Check: Including All Within-Plant Outliers
Panel A: Di�erence Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.244 0.009 0.062 0.064
(0.023)*** (0.056) (0.043) (0.033)*

Number of Obs. 226,332 228,662 376,134 367,059
Number of Clusters 2,961 2,964 3,272 3,262

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.605 0.727 -0.628 0.213
(0.102)*** (0.243)*** (0.379)* (0.186)

Number of Obs. 226,332 228,662 376,134 367,059
Number of Clusters 2,961 2,964 3,272 3,262

Notes: This table presents estimates of Equation (22), without dropping any within-plant outliers.
Panel B instruments for Shortage using the hydroelectric generation instrument. Samples for
columns 1 and 2 are limited to plants that ever self-generate electricity. Robust standard errors,
clustered by state-by-year di�erence. *,**, ***: Statistically di�erent from zero with 90, 95, and
99 percent confidence, respectively.
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Table A10: Robustness Check: One-Year Lags Only
Panel A: Di�erence Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.202 0.084 -0.101 0.028
(0.037)*** (0.084) (0.059)* (0.051)

Number of Obs. 124,861 152,795 229,303 225,149
Number of Clusters 491 491 494 494

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.545 0.264 -0.560 -0.058
(0.187)*** (0.325) (0.385) (0.231)

Number of Obs. 124,861 152,795 229,303 225,149
Number of Clusters 491 491 494 494

Notes: This table presents estimates of Equation (22), using the sample of one-year di�erences
only. Panel B instruments for Shortage using the hydroelectric generation instrument. Samples for
columns 1 and 2 are limited to plants that ever self-generate electricity. Robust standard errors,
clustered by state-by-year di�erence. *,**, ***: Statistically di�erent from zero with 90, 95, and
99 percent confidence, respectively.
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Table A11: Robustness Check: Clustering by State
Panel A: Di�erence Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.227 -0.037 0.022 0.091
(0.029)*** (0.078) (0.079) (0.048)*

Number of Obs. 172,396 220,701 374,283 366,446
Number of Clusters 30 30 30 30

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.571 0.633 -0.680 0.034
(0.112)*** (0.274)** (0.297)** (0.250)

Number of Obs. 172,396 220,701 374,283 366,446
Number of Clusters 30 30 30 30

Notes: This table presents estimates of Equation (22), clustering by state instead of state-by-
year di�erence. Panel B instruments for Shortage using the hydroelectric generation instrument.
Samples for columns 1 and 2 are limited to plants that ever self-generate electricity. Robust
standard errors. *,**, ***: Statistically di�erent from zero with 90, 95, and 99 percent confidence,
respectively.
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Table A12: Robustness Check: Controlling for Rainfall and Cooling Degrees
Panel A: Di�erence Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.229 -0.033 0.023 0.092
(0.023)*** (0.055) (0.040) (0.029)***

� Rainfall 0.003 -0.016 0.008 0.006
(0.003) (0.009)* (0.008) (0.005)

� Cooling Degrees 0.001 -0.005 -0.001 0.001
(0.001) (0.004) (0.003) (0.002)

Number of Obs. 170,435 218,109 370,293 362,537
Number of Clusters 2,719 2,865 3,179 3,179

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Shortage 0.586 0.675 -0.651 0.082
(0.110)*** (0.249)*** (0.341)* (0.148)

� Rainfall 0.008 -0.007 0.004 0.006
(0.004)* (0.010) (0.009) (0.006)

� Cooling Degrees 0.001 -0.007 0.000 0.001
(0.001) (0.004)* (0.003) (0.002)

Number of Obs. 170,435 218,109 370,293 362,537
Number of Clusters 2,719 2,865 3,179 3,179

Notes: This table presents estimates of Equation (22), also including controls for rainfall and cooling
degrees. Panel B instruments for Shortage using the hydroelectric generation instrument. Samples
for columns 1 and 2 are limited to plants that ever self-generate electricity. Robust standard errors,
clustered by state-by-year di�erence. *,**, ***: Statistically di�erent from zero with 90, 95, and
99 percent confidence, respectively.
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Table A13: Robustness Check: Using Peak Shortage Instead of Average Shortage
Panel A: Di�erence Estimator

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Peak Shortage 0.064 -0.013 -0.016 0.018
(0.013)*** (0.030) (0.025) (0.019)

Number of Obs. 172,396 220,701 374,283 366,446
Number of Clusters 2,781 2,936 3,262 3,261

Panel B: Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

� Peak Shortage 0.821 0.890 -0.997 0.049
(0.259)*** (0.375)** (0.545)* (0.206)

Number of Obs. 172,396 220,701 374,283 366,446
Number of Clusters 2,781 2,936 3,262 3,261

Notes: This table presents estimates of Equation (22), using the CEA Peak Shortage estimate
instead of (average) Shortage. Panel B instruments for Peak Shortage using the hydroelectric
generation instrument. Samples for columns 1 and 2 are limited to plants that ever self-generate
electricity. Robust standard errors, clustered by state-by-year di�erence. *,**, ***: Statistically
di�erent from zero with 90, 95, and 99 percent confidence, respectively.
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B.3.1 Estimates with Alternative TFPR Measures

Table A14: Robustness Check: Estimates with Alternative TFPR Measures
Panel A: Di�erence Estimator

(1) (2) (3) (4) (5)
Perfect Comp. Materials+ No Year Include Self-

(‘ = ≠Œ) ‘=-4 Non-Elec Fuels Controls Generators

� Shortage 0.095 0.277 0.091 0.086 0.092
(0.032)*** (0.049)*** (0.030)*** (0.027)*** (0.026)***

Number of Obs. 365,844 365,147 339,061 366,217 366,295
Number of Clusters 3,260 3,260 2,950 3,261 3,261

Panel B: Instrumental Variables

(1) (2) (3) (4) (5)
Perfect Comp. Materials+ No Year Include Self-

(‘ = ≠Œ) ‘=-4 Non-Elec Fuels Controls Generators

� Shortage -0.043 0.086 -0.059 -0.316 -0.229
(0.191) (0.243) (0.150) (0.176)* (0.163)

Number of Obs. 365,844 365,147 339,061 366,217 366,295
Number of Clusters 3,260 3,260 2,950 3,261 3,261

Notes: This table presents estimates of Equation (22), using alternative measures of TFPR de-
scribed in Appendix A.2.2. Panel B instruments for Peak Shortage using the hydroelectric gener-
ation instrument. Robust standard errors, clustered by state-by-year di�erence. *,**, ***: Statis-
tically di�erent from zero with 90, 95, and 99 percent confidence, respectively.
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B.3.2 Separate Results for Self-Generators and Non-Generators

Table A15: Separate Results for Self-Generators and Non-Generators

(1) (2) (3) (4)
Outcome Variable: ln(Revenue) ln(Revenue) ln(TFPR) ln(TFPR)

� Shortage -0.237 -2.833 0.020 -0.143
(0.292) (1.040)*** (0.136) (0.373)

Number of Obs. 234,387 139,896 230,452 135,994
Number of Clusters 2,976 3,089 2,971 3,087
Self-Generators Yes No Yes No

Notes: This table presents estimates of 22, splitting the sample by self-generators versus plants
that never self-generate. Panel B instruments for Shortage using the hydroelectric generation
instrument. Samples for columns 1 and 2 are limited to plants that ever self-generate electricity.
Robust standard errors, clustered by state-by-year di�erence. *,**, ***: Statistically di�erent from
zero with 90, 95, and 99 percent confidence, respectively.
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B.4 Fixed E�ects Estimates

Table A16: Fixed E�ects Estimates with ASI Data
Panel A: Fixed E�ects

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

Shortage 0.273 -0.106 0.077 0.134
(0.042)*** (0.097) (0.078) (0.031)***

Number of Obs. 276,590 312,766 609,257 600,777
Number of Clusters 30 30 30 30

Panel B: Fixed E�ects with Instrumental Variables

(1) (2) (3) (4)
Self-Gen ln(Energy

Outcome Variable: Share Rev Share) ln(Revenue) ln(TFPR)

Shortage 0.763 0.659 -0.611 -0.180
(0.238)*** (0.346)* (0.355)* (0.227)

Number of Obs. 240,874 284,516 501,664 494,356
Number of Clusters 30 30 30 30

This table presents estimates of Equation (22) using fixed e�ects instead of di�erences, also in-
cluding state-specific linear trends. Panel B instruments for Peak Shortage using the hydroelectric
generation instrument. Samples for columns 1 and 2 are limited to plants that ever self-generate
electricity. Robust standard errors, clustered by state. *,**, ***: Statistically di�erent from zero
with 90, 95, and 99 percent confidence, respectively.
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B.5 Additional Simulation Tables

Table A17: Calibration Parameters
Parameter Source
Production Function Coe�cients —m, —l Estimated from ASI data

—k Constant returns to scale assumption
“ Estimated from ASI data

Elasticity of Demand ‘ =-10 Ten percent markup assumption
Price of Grid Power pE,G=4.5 Rs/kWh World Bank Enterprise Survey
Price of Self-Generated Power pE,S=7 Rs/kWh World Bank Enterprise Survey
Shortages ” Data from Central Electricity Authority
Generator Fixed Cost 1374 Rs/KW-year Discussions with Indian generator vendors

Notes: This table details the parameters used for the simulations in Section 7.
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Table A18: Predicted Losses from Electricity Shortages: Robustness

(1) (2) (3) (4)
Low High Expensive

Baseline Elasticity Elasticity Self-Generation
‘ = ≠10 ‘ = ≠4 ‘ = ≠20 pE,S = 4pE,G

Revenue Loss
Average 4.6% 4.0% 5.1% 5.5%
Generators 0.5% 0.2% 0.7% 2.1%
Non-Generators 9.7% 8.5% 10.6% 9.7%

TFPR Loss
Average 1.6% 2.3% 1.2% 1.7%
Generators 0.1% 0.1% 0.1% 0.3%
Non-Generators 3.4% 4.9% 2.6% 3.4%

Input Cost Increase
Generators 0.5% 0.5% 0.5% 2.8%

Profit Loss
Average 5.7% 4.8% 6.5% 6.8%
Generators 0.6% 0.3% 0.8% 2.7%
Non-Generators 11.2% 10.2% 13.5% 11.9%

Endogenous Generator Simulation
Generator Takeup Rate 72% 81% 68% 66%

Notes: Predictions for plants in the 2005 ASI using the model described in text with exogenous
generators. Average refers to the average weighted by plant output. TFPR is defined as the residual
of the revenue generating production function using the approach described in Section 3. Input
Cost Increase reported as a share of revenues. Elasticity refers to the elasticity of the CES Demand
Curve. Column 4 sets the price of self-generated power pE,S to 18 Rupees per kWh instead of 7
rupees per kWh.

71



Online Appendix: Not For Publication Allcott, Collard-Wexler and O’Connell

Table A19: Di�erential E�ects of Shortages

Plant Size Electric Intensity
Large Small High Low

Revenue Loss 2.2% 5.6% 4.4% 4.7%
TFPR Loss 1.8% 0.8% 1.4% 1.8%
Profit Loss from Shortages 2.8% 6.8% 5.4% 5.8%
Profit Gain from Generator 5.1% 4.9% 4.7% 5.3%
Generator Take-Up Rate 82% 72% 62% 94%

Notes: This table presents results of the exogenous generator simulation for di�erent subgroups of
plants. Large vs. Small plants are defined as having more vs. less than 100 employees. High vs.
Low electric intensity is defined as belonging to industries that are above vs. below the median
electricity revenue share.
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B.6 Other Tables

Table A20: Biggest Obstacle for Growth

Problem Percent
Electricity 33
High Taxes 16
Corruption 10
Tax Administration 8
Cost of and Access to Financing 6
Labor Regulations and Business Licensing 5
Skills and Education of Available Workers 4
Access to Land 3
Customs and Trade Regulations 2
Other 12

Notes: These data are from the 2005 World Bank Enterprise Survey in India. The table presents
responses to the question, “Which of the elements of the business environment included in the list,
if any, currently represents the biggest obstacle faced by this establishment?”

Table A21: Determination of Base Sample

Step Dropped Obs. Sample Size
Original ASI dataset 949,992
Closed plants 172,697 777,295
Missing state codes or in Sikkim 99 777,196
Non-manufacturing NIC codes 45,664 731,532
Exact duplicates 312 731,220
Missing revenues 102,036 629,184
Multiple input revenue share outliers 9,095 620,089
Productivity outliers 3,960 616,129
Total observations 616,129

Notes: This table details how the sample in Table 6 is determined from the original set of observa-
tions in the Annual Survey of Industries.
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C Appendix: Additional Figures

Figure A1: Map of Average Shortages by State

Notes: This figure compares the average of shortages estimated by the Central Electricity Authority
to the 2010 per capita GDP, for all states and Union Territories.
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Figure A2: Hydroelectricity Generation Over Time
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Notes: This figure presents hydroelectric generation over the study period for five large states that
are relatively reliant on hydro.
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Figure A3: Correlation Between Reservoir Inflows and Hydro Production
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Notes: This is a scatterplot of hydroelectricity generation against the generation predicted using
state-specific regressions of hydro generation on reservoir inflows. State-specific regressions are
important because the slope of the relationship between reported reservoir inflows and total hydro
generation di�ers substantially by state. One major reason for this is that inflows are only reported
for some reservoirs but are correlated across reservoirs within a state. Thus, a state with more
un-reported reservoirs will have a more steeply-sloped relationship between reported inflows and
total hydro generation.
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